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Abstract

We study the first passage times of discrete-time branching random walks in Rd where d > 1.
Here, the genealogy of the particles follows a supercritical Galton-Watson process. We provide
asymptotics of the first passage times to a ball of radius one with a distance x from the origin,
conditioned upon survival. We provide explicitly the linear dominating term and the logarithmic
correction term as a function of x. The asymptotics are precise up to an order of oP(log x) for
general jump distributions and up to OP(log log x) for spherically symmetric jumps. A crucial
ingredient of both results is the tightness of first passage times. We also discuss an extension
of the first passage time analysis to a modified branching random walk model that has been
proven to successfully capture shortest path statistics in polymer networks.

1 Introduction

We consider a discrete-time branching random walk (BRW) on Rd, where particles in Rd perform
independent random walks until they randomly branch into more particles or die. Spatial branching
processes, including BRW and its continuous-time sibling branching Brownian motion (BBM), have a
long history and a wide range of applications in ecology, population biology, and modeling epidemics
([25, 28, 34, 35, 36, 49]). The study of the extremal behavior of spatial branching processes has gained
increasing attention over recent years. The mathematical techniques applied in those studies are
related to developments in numerous other fields, e.g., discrete Gaussian free field [14, 24], random
unitary matrices [3], Riemann zeta function [4], random multiplicative functions [31], spin glasses
[12], among many others that exhibit a log-correlated structure. We refer to [46, 52] for lecture notes
on BRW and related topics.

The study of the extrema for one-dimensional BBM traces back to [17], which established a precise
asymptotic for the maximum as a function of time. For general branching random walks, [1] provided
a precise asymptotic in terms of the jump distribution of the process. Finer behavior near the frontier
is also well understood since the works of [2, 13, 38, 39]. Nevertheless, less is known in dimensions
greater than one. To name a few examples, there are studies of the maximum norm for BBM
([7, 32, 33, 40, 47]) and very recently of BRW ([8]), as well as the range of spatial branching processes
([37, 53]). These works in higher dimensions typically assumed that the increment distribution is
spherically symmetric. A notable exception is [48], which provided estimates on the number of
particles in a linearly shifted ball in time for a continuous-time version of the BRW.

∗Department of Management Science and Engineering, Stanford University. Email: jose.blanchet@stanford.edu
†Department of Mechanical Engineering, Stanford University. Email: caiwei@stanford.edu
‡Department of Mechanical Engineering, Stanford University. Email: shaswatm@stanford.edu
§Department of Mathematics, Stanford University. Email: zzy@stanford.edu

1

http://arxiv.org/abs/2404.09064v1


Our primary focus is on the first passage times (FPT) for branching random walks in Rd. By
definition, the FPT is the first time for particles to reach a prescribed region. For BBM, [54] es-
tablished a precise asymptotic formula (up to OP(1)) for the FPT; see (62) below. Our interest in
estimating the FPT of spatial branching processes stems from their relevance to polymer physics.
The mechanical behavior of polymer networks appears to be controlled by the shortest paths between
distant nodes in the polymer network, as shown by recent works [50, 51] using coarse-grained mo-
lecular dynamics (CGMD) simulations. The shortest path length (SP) serves as an indicator of
how stretched the average load-bearing chains are in the polymer network. Theories based on SP
go beyond traditional polymer models focused on elastic behaviors and aim to explain the inelastic
behaviors exhibited by such materials.

The SP between (fixed) distant nodes is equivalent to the FPT of the BRW beginning from the
origin (source node) and terminating at a desired point in space (destination node). Moreover, the
occurrence of the cross-links along the polymer backbone mimics a Poisson process. As a result, a
cross-link between two chains is equivalent to a branching event observed in the BRW genealogy tree.
The agreement of the mean FPT from the BRW theory with the mean SP from the CGMD simulation
results has been shown in our recent work [54]. Furthermore, the numerical implementation of the
BRWmodel shows an excellent agreement between its FPT distribution and the SP distribution from
the CGMD simulation. Our earlier work initially focused on constant length jumps with the BRW
model where there existed a correlation between the components of a jump step in the d dimensions
by virtue of being sampled from the unit sphere Sd−1 = {x ∈ Rd | ‖x‖ = 1}. This was later shown
to be represented equally well by the Gaussian BRW and BBM in which the components of each
jump step are independent in the d dimensions. However, the analysis was restricted to spherically
symmetric jumps to accurately model the as-prepared polymer network prior to deformation.

In this paper, we provide FPT asymptotics for BRW that may not have a spherically symmetric
jump distribution (while the case of spherically symmetric jumps is of special interest for our ap-
plications). The main results are explained in Section 1.2 and their proofs are presented in Section
2. Applications to polymer physics will be detailed in Section 3.1.

1.1 Notation and assumptions

Let us start with a formal definition of the branching random walk (BRW). We consider a
discrete-time BRW model with offspring distribution {pi}i>0. This means that at each time step,
each particle independently reproduces i particles at the same location with probability pi. The case
of i = 0 corresponds to the particle being terminated. Let ρ =

∑
i i pi be the mean of the offspring

distribution. We will always assume the supercritical case of ρ > 1. The d-dimensional random walk
increment is given by ξ, and the first particle starts from the origin 0 ∈ Rd. Typically, in this paper,
a bold symbol refers to a vector.

Our goal is to study the asymptotic of the FPTs of the BRW. For x ∈ R, we let Bx denote a ball
of radius one1 centered at (x, 0, . . . , 0) in Rd. We let Vn denote the collection (i.e. set) of particle
locations at time step n, and {ηv,n(k)}06k6n denotes the d-dimensional random walk that leads to
v ∈ Vn. We define the FPT τx of the BRW to Bx, that is,

τx = min{n > 0 : ∃ v ∈ Vn, ηv,n(n) ∈ Bx}.

In what follows, we will separately analyze the cases depending on whether the law of ξ is
spherically symmetric or not.2 In both cases, we impose the following assumptions on the BRW:

(A1) the offspring distribution has a finite second moment, i.e.,
∑

i i
2 pi < ∞;

(A2) the law of ξ is integrable and centered, i.e., E[ξ] = 0.

1Replacing the radius one by any fixed positive constant will not change the analysis; the same proof goes through.
2A probability distribution on Rd is spherically symmetric if it is invariant under any orthonormal transformation.

Equivalent definitions can be found in Theorem 2.5 of [26].

2



For a stochastic process {Tx}x>0 and a positive deterministic sequence {tx}x>0, we write Tx = OP(tx)
if the collection {Tx/tx}x>0 is tight, and Tx = oP(tx) if Tx/tx → 0 in probability.

1.1.1 Spherically symmetric jumps

Denote the first coordinate of ξ by ξ, which is a real-valued random variable. We introduce the
large deviation rate function

I(x) := sup
λ>0

(
λx− logφξ(λ)

)
, (1)

where φξ(λ) := E[eλξ] is the moment generating function for ξ. In this case, we make the following
assumptions on ξ:

(A3) the law of ξ is spherically symmetric in Rd, and its radial component R satisfies P(R = 0) < 1;

(A4) log ρ ∈ (ranI)◦, where (ranI)◦ is the interior of the range of I. In other words, there exists
c1 > 0 such that I(c1) = log ρ. It can be shown that c1 ∈ (ran(logφξ)

′)◦.

Note that under assumptions (A2) and (A3), I is C1 and convex in its domain, and attains a unique
global minimum at x = 0.3 We will also see from Lemma 24 below that (A3) implies that both
ξ and ξ are non-lattice if d > 2.4 A consequence of (A4) is that the number of particles forms a
supercritical Galton-Watson process. Denote by c2 := I ′(c1) the value of λ at which the supremum
in (1) is taken for x = c1. In particular, (A4) implies that φξ is well-defined in a neighborhood
of c2. The constants c1 and c2 here depend only on the offspring distribution (through ρ) and the
increment distribution (through φξ(λ)) and will be fixed throughout this paper.

1.1.2 Non-spherically symmetric jumps

Let

I(x) := sup
λ∈Rd

(
λ · x− logφξ(λ)

)
= sup
λ∈Rd

(
λ · x− logE[eλ·ξ]

)
(2)

denote the large deviation rate function for ξ. We impose the following assumptions:

(A5) there exist m ∈ N and r > 1 such that ξ1 + · · ·+ ξm has a density in Lr(Rd), where {ξi}16i6m

are i.i.d. copies of ξ;

(A6) log ρ ∈ (ranI(·,0))◦, where I(·,0) refers to the function I with the last d− 1 variables fixed at
zero; let ĉ1 > 0 satisfy I(ĉ1,0) = log ρ, then (ĉ1,0) ∈ (ran∇ logφξ)

◦.

Denote by c2 = ∇I((ĉ1,0)), which is the value of λ where the supremum (2) is attained at x = (ĉ1,0).
The intuition behind the vector c2 is explained by Figure 1 below. The assumption (A5) is crucial
for the non-degeneracy of the jumps. More precisely, (A5) implies that the support of ξ cannot be
contained in a proper subspace of Rd and that ξ is non-lattice. Both conditions are necessary for
the BRW to be able to reach the target ball Bx. A consequence of (A6) is that φξ is well-defined in
a neighborhood of c2. We will see in Proposition 21 that (A3) and (A4) together imply (A6) with
ĉ1 = c1.

3See e.g., Theorem 26.3 of [44].
4We say the law of ξ is non-lattice if there is no y ∈ Rd such that the support of ξ + y is contained in a discrete

subgroup of Rd.

3



Figure 1: A two-dimensional visualization of the vector c2. The range of a (non-spherically symmet-
ric) BRW roughly grows linearly in time (illustrated with the shaded ellipses); at time τx, the ellipse
is nearly tangent to the target ball Bx (shaded disk). Roughly speaking, the vector c2 is normal to
the tangent line.

1.2 Main results

In the following, we fix a dimension d > 1. Consider first the case of spherically symmetric
jumps. Let us define

A(x) :=
x

c1
+

d+ 2

2c2c1
log x. (3)

For a finite set G, we use #G to denote its cardinality. Denote by S := {∀n > 1, #Vn > 0} the
survival event that the underlying branching process survives at all times. Since ρ > 1, we have
p := P(S) > 0.

Theorem 1. Assume (A1)–(A4). Conditional upon survival, it holds that

τx = A(x) +OP(log log x) =
x

c1
+

d+ 2

2c2c1
log x+OP(log log x). (4)

In other words, the collection {(τx −A(x))/ log log x}x>0 is tight.

A natural question is whether the OP(log log x) can be replaced by a OP(1), which we later
formulate as Conjecture 1. We discuss a few pieces of evidence that support this conjecture, and
further aspects will be discussed in Section 5. First, this is the case for d = 1 (Proposition 7 below)
and for the branching Brownian motion in Rd (Theorem 1 of [54]). A second piece of evidence is
the following tightness result on first passage times that is also central to our proof of Theorem 1.

Theorem 2. For r ∈ (0, 1) and x > 0, let t
(r)
x be the r-th quantile of the first passage time τx, i.e.,

t
(r)
x = inf{t : P(τx 6 t | S) > r}. Assume (A1), (A2), and (A6). There exist constants C, c > 0
independent of x such that for each y ∈ [0, x],

P

(
|τx − t(1/2)x | > y | S

)
6 Ce−cy. (5)
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In particular, conditioned upon survival, the collection of laws {τx − t
(r)
x }x>0 is tight for each r ∈

(0, 1).

The analog of Theorem 2 for the maximum of BRW traces back to [21] and [41], which assumed
uniformly bounded jumps. The case of unbounded jumps was later resolved by [15] and [16] using
a different approach. Theorem 2 generalizes these results to the first passage times of BRW in
arbitrary dimensions. In this setting, for the jumps, we only require mean zero and assumption
(A6). Since (A3) and (A4) together imply (A6), Theorem 2 applies in the spherically symmetric
case as well.

Extending these results to the case of non-spherically symmetric jumps, we define

Â(x) :=
x

ĉ1
+

d+ 2

2 ĉ1∂x1I(ĉ1,0)
log x, (6)

where we recall the definition of ĉ1 from assumption (A6).

Theorem 3. Assume (A1), (A2), (A5), and (A6). Conditional upon survival,

τx = Â(x) + oP(log x) =
x

ĉ1
+

d+ 2

2ĉ1∂x1I(ĉ1,0)
log x+ oP(log x). (7)

In other words, the collection (τx − Â(x))/ log x converges to 0 in probability as x → ∞.

There are certain instances for non-spherically symmetric jumps where the asymptotic (7) can
be improved. Such a class includes product measures and non-degenerate centered elliptical distri-
butions on Rd.5 These will be addressed in detail in Section 3.2.

An immediate corollary of Theorems 2 and 3 is the following strong law of large numbers for the
first passage times.

Corollary 4. Assume (A1), (A2), (A5), and (A6). Conditioned upon survival,

τx
x

→ 1

ĉ1
a.s.

As yet another consequence of Theorems 2 and 3 (while slightly modifying their proofs), the full
range of the BRW forms a dense subset of Rd, complementing Corollary 2.5 of [43] that the full
range of the BBM is dense.

Corollary 5. Assume (A1), (A2), (A5), and (A6). Conditioned upon survival, the set

R :=
⋃

n>0

⋃

v∈Vn

{ηv,n(n)}

is dense in Rd almost surely.

In Section 4, we test Theorems 1 and 3 numerically with a path purging algorithm that signific-
antly improves the computational efficiency for capturing the extremal behavior of a BRW.

1.3 Proof strategy

In this subsection, we discuss the high-level intuition of the strategy we will follow, building from
the case of d = 1. Throughout we condition on the survival event. We first assume the jump is

5We say that a centered random variable ξ follows a non-degenerate elliptical distribution if ξ
law
= TU where U is

spherically symmetric and T is an invertible linear transformation.
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spherically symmetric. For one-dimensional BRW, we expect the following parity relation between
maximum and FPT. Recall that the asymptotic for the maximum Mn at time n is

Mn = mn +OP(1), where mn := c1n− 3

2c2
logn. (8)

Inverting (8) leads to the asymptotic (e.g., using the Lambert W function)

n =
Mn

c1
+

3

2c2c1
logMn +OP(1).

It is then natural to guess that for one-dimensional BRW,

τx = m1(x) +OP(1), where m1(x) :=
x

c1
+

3

2c2c1
log x, (9)

which we will prove in Proposition 7 below in Section 2.1. Recall (3). Let us decompose A(x) =
m1(x) +m2(x), where

m2(x) := A(x) −m1(x) =
d− 1

2c2c1
log x. (10)

For a general dimension d > 1, we shall explain the extra term m2(x).
The main difficulty in analyzing the first passage times in higher dimensions is that the second

moment method does not immediately apply if one counts the number of particles in the target ball
Bx at a certain time. To bypass this difficulty, we prove separately the upper and lower bounds for
τx.

A key step in these bounds is Proposition 8, which keeps track of the number of particles that
are near the frontier (say, a distance of logn away) for a one-dimensional BRW. Roughly speaking,
there are around xec2x many particles that are of a distance x behind the frontier, where x ≪ logn.
This amounts to generalizing the proof of the asymptotic of the maximum (8); see [13]. A notable
distinction is that unfortunately, one cannot conclude from the second moment method the lower
bound for the number of particles near the frontier with overwhelming probability. Instead, one
only concludes the lower bound with a uniformly positive probability. This gap can be filled using
Theorem 2, which shows that a uniformly positive probability would already be sufficient.

A particularly nice feature of the spherical symmetry of the jumps is that the displacements
in different directions are approximately independent (likewise, the same result Theorem 1 holds if
we instead assume independent centered jumps in the d directions). In particular, at time n, one
roughly expects a proportion O(n−(d−1)/2) of the particles that lie within unit distance from the
origin in the last d−1 dimensions. In other words, one expects that the first passage event is realized
around the time when x(d−1)/2 particles reach a distance of x for the Rd-valued BRW projected onto
the first dimension; see Figure 2 below. On the other hand, by (8), the extra time of m2(x) from
(10) pushes the frontier ahead by a distance of approximately c1m2(x) = (d− 1)(logx)/(2c2), which
amounts to having approximately x(d−1)/2 extra particles in view of Proposition 8.

If the jump distribution is not spherically symmetric, applying similar arguments above (with
Proposition 8 replaced by Theorem B of [11] and Proposition 10 by Proposition 17; we omit the
details here) will lead to

τx =
x

ĉ1
+OP(log x), (11)

where the corresponding upper and lower bounds for τx are separated by an order of log x. To pin
down the coefficient of the logarithm correction term, we extend the arguments for the maximum
of one-dimensional BRW ([13]) with a modified barrier. The modified barrier event lies in Rd and
hence results on random walks in cones ([23]) are applicable. Note that the same proof also applies
for the spherically symmetric case, but would yield less precise asymptotics compared to (4) (an
oP(log x) instead of an OP(log log x)).
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Figure 2: Schematic description of the heuristic for spherically symmetric jumps: around a propor-
tion x−(d−1)/2 of the particles that reach roughly x far in the first coordinate (represented by blue
dots) lie in the ball Bx. The path in red represents (part of) the trajectory that realizes the FPT,
whereas the other branches are shown in black.

2 Proofs of main results

This section is devoted to the proofs of the main results. We will first analyze the simple case
of d = 1 in Section 2.1, where a precise asymptotic of the FPT follows directly from inverting the
maxima asymptotic (8). We then collect the necessary tools in Sections 2.2.1 and 2.2.2, and prove
Theorems 1 and 2 in Sections 2.2.3 and 2.3 respectively. The case of non-spherically symmetric
jumps (Theorem 3) will be addressed in Section 2.4, where we also summarize preliminary results on
random walks that are constrained to stay in a cone. Section 2.5 presents the proofs of Corollaries
4 and 5.

We begin by introducing some necessary notations. Following [13], we let {ηv,n(k)}k=0,...,n denote
the d-dimensional random walk where ηv,n(k) is the position of the k-th generation for the path
in the tree leading to the vertex v on level n, denoted by v ∈ Vn. We also let ηv,n(k) denote the
first coordinate of ηv,n(k). When d = 1, these notions coincide. For deterministic quantities or
functions A,B, We use Vinogradov’s symbol A ≪ B (or A = O(B)) to denote |A| 6 CB with some
constant C > 0 that depends only on the distribution of ξ and the dimension d. We write A ≍ B
if A ≪ B ≪ A. The notation ‖·‖ always denotes the Euclidean norm. We use Bx(r) to denote the
shifted ball of radius r centered at x ∈ Rd, Bx = Bx(1), and Bx = B(x,0) for x ∈ R.

2.1 Warming up in dimension one

For β > 0 and n ∈ N we define the event

Gn,β :=
⋃

v∈Vn

⋃

06k6n

{
ηv,n(k) >

kmn

n
+ β +

4

c2
(log(min(k, n− k)))+

}
.

Lemma 6 (Lemma 2.4 of [13]). Assume conditions (A1), (A2), and (A4), and assume that the
jump distribution is non-lattice. It holds that P(Gn,β) ≪ βe−c2β.
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Proposition 7. Suppose that a one-dimensional BRW satisfies conditions (A1), (A2), and (A4),
and that the jump distribution is non-lattice. We have

τx = m1(x) +OP(1) =
x

c1
+

3

2c2c1
log x+OP(1).

Proof. For the lower bound, we fix ε > 0 and pick β large enough such that P(Gn,β) < ε, by means
of Lemma 6. In other words, with a probability larger than 1 − ε, all trajectories of the BRW stay
below the curve

k 7→ kmn

n
+ β +

4

c2
(log(min(k, n− k)))+.

It is clear that with C1 = C1(β) > 0 chosen large enough,

max
16k6τx−C1

(kmτx

τx
+ β +

4

c2
(log(min(k, τx − k)))+

)
6 x.

This yields P(τx 6 m1(x)− C1) 6 P(Gn,β) < ε, proving the lower bound.
For the upper bound, we fix ε > 0. Pick C2 > 0 such that P(Mm1(x)+C2

> x) > 1 − ε/3 by
(8). Using the same analysis for the lower bound, there exists C3 > 0 such that P(Mm1(x)+C2

>
x + C3) < ε/3. Therefore, with probability > 1 − 2ε/3, there is v ∈ Vm1(x)+C2

such that x 6

ηv,m1(x)+C2
(m1(x) + C2) 6 x + C3. Since the distribution of ξ is non-lattice, by the Theorem 2 of

[42], the random walk initiated from v is recurrent, and hence there exists C4 > 0 such that the
descendants of v reaches [x − 1/2, x+ 1/2] with probability > 1 − ε/3 within time C4. Combining
the above leads to P(τx > m1(x) + C2 + C4) < ε, as desired.

2.2 Proof of Theorem 1

We now present the proof of Theorem 1 for d > 2, conditioned on Theorem 2. The proof of
Theorem 2 will be the focus of the next section. The following auxiliary results are necessary as
explained in our proof strategy.

2.2.1 The number of particles near maximum

The goal of this section is to prove the following result on the number of particles near the frontier
of the BRW, which might be of independent interest.

Proposition 8. Assume (A1)–(A4). There exists L > 0 depending only on the law of the BRW such
that the following holds conditioned upon survival. Given any ε > 0, there exists C > 0 independent
from n and x such that uniformly for n large enough and for x ∈ [2,

√
n],

P (#{v ∈ Vn : ηv,n(n) > mn − x} > Cxec2x | S) < ε (12)

and

P

(
#{v ∈ Vn : ηv,n(n) > mn − x} >

1

C
xec2x | S

)
>

1

L
. (13)

Remark 1. Proposition 8 may be compared against [11, 45], where it is proven that for a location
that is Ω(n) away from mn, the number of particles therein has the same order as its expectation.
Proposition 8 shows that this is not the case for locations that are O(

√
n) near mn. On the other

hand, the number of particles that are O(
√
n) away from the origin can be described by the BRW

central limit theorem [10]. An interesting question would be to analyze the phase transitions between
those regimes. We also expect that (13) holds if we replace its right-hand side by 1 − ε, but the
current version suffices for our purpose.
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Following the setup of Section 2.2 of [13], we introduce λn which is the value of λ where the
supremum of (1) is attained with x = mn/n. By (15) of [13], it holds 0 6 c2 − λn ≪ (log n)/n. Let
Q(n) be defined by

dP

dQ(n)
:= e−λn(ηv,n(n)−mn)−nI(mn/n) ≍ n3/2ρ−ne−λn(ηv,n(n)−mn). (14)

It follows that under Q(n), {ηv,n(k)− kmn/n}k=0,...,n is a mean zero random walk. Let

Qn,β :=

{
v ∈ Vn : for any 0 6 k 6 n, ηv,n(k) <

kmn

n
+ β +

4

c2
(log(min(k, n− k)))+

}

and define

g(n, β, x) := E[#{v ∈ Qn,β : ηv,n(n) > mn − x}]. (15)

We first reduce the proof of the upper bound (12) into proving the following estimate on g(n, β, x).

Proposition 9. Assume (A1)–(A4). Uniformly in x ∈ [2,
√
n],

g(n, β, x) ≪ β(x + β)ec2x.

Proof of (12) given Proposition 9. For fixed C, ε > 0, we pick β large enough so that P(Gn,β) < ε/2
by Lemma 6. On the event Gc

n,β, Qn,β = Vn. By Proposition 9, uniformly for n and x ∈ [2,
√
n],

E

[
#{v ∈ Vn : ηv,n(n) > mn − x}1Gc

n,β

]
≪ β(x + β)ec2x.

Markov’s inequality then yields that for some L > 0,

P
(
Gc

n,β ∩ {#{v ∈ Vn : ηv,n(n) > mn − x} > Lβ(x+ β)ec2x}
)
<

ε

2
.

This yields (12).

Proof of Proposition 9. Consider a fixed v ∈ Vn. We have

E[#{v ∈ Qn,β : ηv,n(n) > mn − x}]
= ρnP(v ∈ Qn,β, ηv,n(n) > mn − x)

=

x+β−1∑

j=0

ρnP(v ∈ Qn,β, ηv,n(n) ∈ [mn + β − j − 1,mn + β − j)).

By substituting i = β − j, the latter probability is precisely χP
n,n(i) defined below (15) in [13]. It is

proved in (18) therein the estimate

χP
n,n(i) ≪ β(β − i+ 2)ρ−ne−c2i,

where our assumption x 6
√
n is used. This leads to

E[#{v ∈ Qn,β : ηv,n(n) > mn − x}] ≪
x+β∑

j=0

β(j + 2)e−c2(β−j) ≪ β(x+ β)ec2x,

completing the proof.
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Proof of (13). We apply the second moment method. Define

Pn :=

{
v ∈ Vn : for any 0 6 k 6 n, ηv,n(k) <

kmn

n

}
.

For x ∈ [2,
√
n] and v ∈ Vn, define the event

Hv,n(x) := {v ∈ Pn, ηv,n(n) ∈ [mn − x,mn − x+ 1)}

and ∆n,x :=
∑

v∈Vn
1Hv,n(x). It follows that

#{v ∈ Vn : ηv,n(n) > mn − x} > ∆n,x. (16)

Let us first compute the first moment E[∆n,x]. Using (14), we have

P(Hv,n(x)) ≫ n3/2ρ−nEQ

[
e−λn(ηv,n(n)−mn)

1Hv,n(x)

]

≫ n3/2ρ−nEQ

[
ec2x1Hv,n(x)

]
= n3/2ρ−nec2xQ(Hv,n(x)).

By the ballot theorem, in the form of Lemma 2.1 of [13], We have

Q(Hv,n(x)) ≫ n−3/2 max(x − 1, 1) ≫ n−3/2x.

Combining the above yields

E[∆n,x] = ρnP(Hv,n(x)) ≫ xec2x. (17)

Next we estimate the second moment E[∆2
n,x]. Observe that by (A1) (see (29) of [13]),

E[∆2
n,x] ≪ E[∆n,x] + ρn

n∑

s=1

ρsP(Hv,n(x) ∩Hw,n(x) for v ∼s w), (18)

where v ∼s w means that the distance of v and w in the genealogical tree is equal to 2s. To bound
the latter probability we condition on the location of the common ancestor of v and w, ηv,n(n− s).
We have for v ∼s w,

P(Hv,n(x) ∩Hw,n(x))

6

∞∑

j=0

P

(
ηv,n(k) 6

kmn

n
for k 6 n− s, ηv,n(n− s)− (n− s)mn

n
∈ [−(j + 1),−j)

)

×
(

sup
y∈[−(j+1),−j)

P (n, s, x, y)

)2

,

where

P (n, s, x, y) := P

(
ηv,n(n− s+ ℓ) 6

(n− s+ ℓ)mn

n
for 0 6 ℓ 6 s,

ηv,n(n) ∈ [mn − (x+ 1),mn − x) | ηv,n(n− s)− (n− s)mn

n
= y

)
.
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With the same change of measure and ballot theorem argument as above, we get

P

(
ηv,n(k) 6

kmn

n
for k 6 n− s, ηv,n(n− s)− (n− s)mn

n
∈ [−(j + 1),−j)

)

≪ e3(n−s)(logn)/(2n)ρ−(n−s)eλnj

× (max(1, n− s))−3/2 max ((mn−s − (n− s)mn/n+ j), 1)

≪ ρ−(n−s)eλn((3/(2c2))((n−s)(logn)/n−log(n−s))+j)

×max

((
j +

(n− s) logn

n
− log(n− s)

)
, 1

)

≪ ρ−(n−s)jec2j−3 log(n−s)/2+3(n−s) logn/(2n),

where in the last step we use 0 6 c2−λn ≪ (logn)/n. In a similar manner, (while using (6) of [13]),
we obtain the estimate

P (n, s, x, y) ≪ ρ−sjxec2(x−j)+3((s logn)/n−log s)/2.

In conclusion, we arrive at

E[∆2
n,x] ≪ xec2x +

n∑

s=1

∞∑

j=0

jec2j−3 log(n−s)/2+3(n−s) log n/(2n)

×
(
jxec2(x−j)+3((s logn)/n−log s)/2

)2

≪ xec2x + x2e2c2x
n∑

s=1

n3/2e(3s logn)/(2n)

(max(1, n− s))3/2s3
≪ x2e2c2x, (19)

where in the last step we argue similarly as in the proof of Lemma 2.7 of [13]. Combined with (16),
(17), and the Paley-Zygmund inequality leads to (13).

2.2.2 Large deviation computations

In the following, we let {(Xj ,Yj)}j∈N be a sequence of i.i.d. random variables with the same
distribution as ξ, and (X,Y) =

∑n
j=1(Xj ,Yj). Recall the definition of mn from (8).

Proposition 10. Fix a large constant C > 0 and a dimension d > 1. Suppose that the Rd-valued
random variable ξ satisfies conditions (A2)–(A4) from Section 1.1.

(i) Uniformly for any positive sequence u(n) 6 C
√
n and any c = c(n) ∈ [−C logn,C logn],

P(Y ∈ B0(u(n)) | X > mn + c) ≪ u(n)d−1n−(d−1)/2. (20)

(ii) Fix a(n) → ∞ and a(n) = o(logn). Uniformly for y with ‖y‖ 6 C
√
n and c ∈

[−C logn,C logn],

P(Y ∈ By(1) | X ∈ [mn + c,mn + c+ a(n)]) ≫ n−(d−1)/2. (21)

(iii) For any ε > 0, there exists K > 0 such that uniformly for c ∈ [−C logn,C logn],

P(Y 6∈ B0(K
√
n) | X > mn + c) < ε. (22)

The proof of Proposition 10 is deferred to the appendix.
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2.2.3 Proof of Theorem 1 conditioned on Theorem 2

Recall (3). Let us define

A1(x) := A(x) +
2

c2c1
log log x, A2(x) := A(x)− 1

c2c1
log log x.

In view of Theorem 2, it suffices to prove that for any a(x) that tends to infinity, and any ε > 0,
there exists N > 0 such that for any x > N ,

P(τx > A1(x) + a(x)) 6 1− 1

L
(23)

and

P(τx < A2(x)− a(x)) < ε. (24)

In the following, we fix ε > 0 and a(x).

Proof of the upper bound. Define

α(x) :=
d− 1

2c2
log x− 1

c2
log log x+ c1a(x)

and
Wn :=

{
v ∈ Vn : ηv,n(n) ∈

(
mn − α(x),mn

)
×B0(

√
x)
}
.

We first prove that for x large enough and some large constant L1 to be determined,

P
(
#W(log x)2 < L1x

(d−1)/2
)
< 1− 1

L
. (25)

Indeed, let

W̃n :=
{
v ∈ Vn : ηv,n(n) ∈

(
mn − α(x),mn

)}
.

It follows from Proposition 8 that for x large enough, P(#W̃n < L1x
(d−1)/2) < 1 − 1/L. Moreover,

a union bound gives that out of L1x
(d−1)/2 particles in W̃n, the probability that the last d − 1

coordinates fall outside B0(
√
x) for some of them is at most L1x

(d−1)/2P(‖Z‖ >
√
x/ logx) = o(1),

where Z denotes a standard Gaussian random variable on Rd−1. This proves (25).
The plan is to evolve (on the event of (25)) the L1x

(d−1)/2 particles in W(log x)2 (independently)
so that at least one of those families has a descendant landing in Bx at time A1(x) + a(x) with
high probability, where we recall that Bx is the ball of radius one centered at (x,0). Let us now fix
w ∈ W(log x)2 . Define τ ′(x) := A1(x) + a(x)− (log x)2 and

p(w) := P
(
ηv,τ ′(x)(τ

′(x)) ∈ Bx − ηw,(logx)2((log x)
2) for some v ∈ VA1(x)+a(x)−(logx)2

)
,

which is the probability that at least one descendant of w lands in Bx at time A1(x) + a(x). Here
and later, we will without loss of generality assume that quantities that tend to infinity are integers.
By independence and by picking the constant L1 in (25) large enough, it suffices to prove p(w) ≫
x−(d−1)/2 for w ∈ W(log x)2 . Since ηw,(logx)2((log x)

2) ∈ (m(log x)2 − α(x),m(log x)2) and mτ ′(x) >

x− (m(log x)2 − α(x)), by the main result of [39],

P
(
ηv,τ ′(x)(τ

′(x)) ∈ Bx(1)− ηw,(logx)2((log x)
2) for some v ∈ VA1(x)+a(x)−(logx)2

)
>

1

L
.

Conditionally on existence, applying Proposition 10(ii) to the particle v ∈ VA1(x)+a(x)−(logx)2 with

ηv,τ ′(x)(τ
′(x)) ∈ Bx(1)− ηw,(log x)2((log x)

2) leads to p(w) > x−(d−1)/2/L. This establishes (23).
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Proof of the lower bound. Our goal is to bound P(τx 6 A2(x) − a(x)) from above. According
to Propositions 8 and 10, at time A2(x) there will be less than O(1) number of particles that lie in
[x,∞) × B0(1) in expectation. We need to argue that other particles that stayed in Bx earlier but
currently do not stay in [x,∞)× B0(1) do not contributed asymptotically. This is because most of
the O(1) particles will arrive not much earlier than m1(x) +m2(x), and will not move quickly.

Consider n = A2(x). Recall that ε > 0 and a(x) → ∞ are fixed. We define Tv,n(x) := min{0 6

k 6 n : ηv,n(k) > x} and for an integer j ∈ [a(x),m2(x)],

Vn,j :=
{
v ∈ Vn : Tv,n(x) = A2(x) − j

}
.

It follows from Lemma 6 that for any ε > 0, there exists L2 large enough such that

P(τx 6 A2(x) − a(x))

6 P




m2(x)+L2⋃

j=a(x)

⋃

v∈Vn,j

⋃

Tv,n(x)6k6n

{ηv,n(k) ∈ Bx}


+ P

(
MA2(x)−m2(x)−L2

> x
)

6

m2(x)+L2∑

j=a(x)

P


 ⋃

v∈Vn,j

⋃

Tv,n(x)6k6n

{ηv,n(k) ∈ Bx}


+

ε

4
. (26)

Let us further decompose the event {ηv,n(k) ∈ Bx} depending on the location at the first time the
random walk {ηv,n(k)}06k6n reaches [x,∞)×Rd−1, whether ηv,n(Tv,n(x)) ∈ [x,∞)×B0(c3j) with
some c3 > 0 to be determined.

First, with j fixed,

P


 ⋃

v∈Vn,j

⋃

Tv,n(x)6k6n

{ηv,n(k) ∈ Bx, ηv,n(Tv,n(x)) ∈ [x,∞)×B0(c3j)}




6 P


 ⋃

v∈Vn,j

{ηv,n(A2(x) − j) ∈ [x,∞) ×B0(c3j)}




= P


 ⋃

v∈VA2(x)−j

{ηv,A2(x)−j(A2(x) − j) ∈ [x,∞)×B0(c3j)}


 .

Using Proposition 8 (while adjusting the proof suitably), we see that for some L3 > 0,

P

(
#{v ∈ VA2(x)−j : ηv,A2(x)−j(A2(x) − j) > x} > L3j

2e−c2c1jn(d−1)/2
)
<

ε

10j2
.

Applying Proposition 10(iii) and the union bound then yields

P


 ⋃

v∈VA2(x)−j

{ηv,A2(x)−j(A2(x)− j) ∈ [x,∞)×B0(c3j)}


 6

ε

10j2
+ L3j

2e−c2c1j(c3j)
d−1.

Second, using that j > a(x) and a(x) → ∞ as x → ∞, as well as Theorem 3.2 of [29], we have for
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some c3, c4 > 0 large and independent of x, such that for all x large enough,

P


 ⋃

v∈Vn,j

⋃

Tv,n(x)6k6n

{ηv,n(k) ∈ Bx, ηv,n(Tv,n(x)) ∈ [x,∞)×B0(c3j)
c}




6 P

(
max
v∈Vj

‖ηv,j(j)‖ > (c3 − 1)j

)

6 dP

(
max
v∈Vj

|ηv,j(j)| >
(c3 − 1)j√

d

)

6 e−j/c4 .

Inserting the above estimates to (26) leads to

P(τx 6 A2(x)− a(x)) 6
ε

4
+

∞∑

j=a(x)

(
ε

10j2
+ L3j

2e−c2c1j(c3j)
d−1 + e−j/c4

)
.

For any ε > 0 and a(x) → ∞, the right-hand side is < ε for x large enough. This completes the
proof of the lower bound (24).

2.3 Tightness of first passage times: proof of Theorem 2

We build upon ideas from [41], while in contrast, we do not assume uniform boundedness of
the increments.6 In the following, we write C1, C2, C3, . . . as large constants and c3, c4, . . . as small
constants that may depend on the law of ξ and the branching rate.7 Here, we do not assume that
ξ is spherically symmetric. We start with a few preparatory lemmas.

Lemma 11. Assume (A6). For any C1 > 0 and c3 > 0, there exists C2 > 0 such that the
following holds for k large enough: let (Xj ,Yj) be a sequence of i.i.d. random variables with the

same distribution as ξ, C > C2, and (X,Y) =
∑Ck

j=1(Xj ,Yj). Then uniformly for k > 0 and z ∈ Rd

such that ‖z‖ 6 C1k,
P((X,Y) ∈ Bz) ≫ e−c3k.

The proof of Lemma 11 is deferred to the appendix.

Lemma 12. There exist some C3, c4 > 0 such that for k > 1 large enough,

P(#{v ∈ VC3k : ηv,C3k(C3k) > k} < ec4k | S) ≪ e−c4k.

Proof. We first claim that for any c5 > 0, there exist c6, c7 > 0 such that uniformly for n large
enough,

P(#{v ∈ Vn : ‖ηv,n(n)‖ 6 c5n} < ec6n | S) ≪ e−c7n. (27)

Indeed, given c5, let c8 = c5/(6dc̄1) where here c̄1 stands for the maximum linear speed of the BRW
across all d directions, so that by Theorem 3.2 of [29],8

P

(
∃v ∈ Vc8n, ‖ηv,c8n(c8n)‖ >

c5n

2

)
≪ e−c7n. (28)

6In fact, we expect that our approach also leads to a concentration result for the maximum of BRW without
assuming uniform boundedness of the increments.

7Not to confuse with the fixed constants c1, c2 defined in Section 1.1.1.
8Theorem 3.2 of [29] is stated in the Schröder case, where p0 + p1 > 0. However, the proof for the upper bound of

the large deviation probability does not rely on this assumption; see Remark 3.3(b) therein.
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Conditioning upon the survival event S, with an exponentially small probability we have that
#Vc8n > ec9n. Evidently, each v ∈ Vc8n will lead independently with probability > 1/2 to a particle
w ∈ Vn where ‖ηw,n(n)− ηw,n(c8n)‖ 6 c5n/2. This along with standard binomial estimates proves
(27).

We continue to the proof. We apply first (27) with n = k and c5 = 1. Outside a set of
exponentially small probability, we may consider a subcollection of ec6k particles in {v ∈ Vk :
‖ηv,k(k)‖ 6 k}, which we label by vj , 1 6 j 6 ec6k. We next evolve the particles vj independently
and check if they reach k in the x-direction. It suffices to consider the presence of the particles
evolved from vj , 1 6 j 6 ec6k in a ball of radius one and at most k + k + 1 6 3k apart (from the
locations of vj). By Lemma 11 applied with C1 = 3 and c3 = c6/2, for each j we have for some
C2 > 0, with wj denoting the location of (a fixed descendant of) vj after time C2k, that

P(wj ∈ [k,∞)× Rd−1) > P(wj ∈ B(k+1,0)) ≫ e−c6k/2. (29)

Note that such a fixed path exists for at least half of vj ’s with overwhelming probability. In conclu-
sion, we evolved at least ec6k/2 many particles independently at time k for time C2k, each resulting
in a probability of ≫ e−c6k/2 to land in [k,∞) × Rd−1. A standard binomial estimate yields that
with overwhelming probability, there exist ec6k/4 particles at time (C2+1)k present in [k,∞)×Rd−1

(conditional on survival). This completes the proof.

Lemma 13. There exist constants c10, C4 > 0 such that for x large enough,

P(τx > C4x | S) ≪ e−c10x.

Proof. The proof is almost the same as Lemma 12, by replacing k by x and using the second
inequality of (29) only.

In the proof of Theorem 2, we wish to use Lemma 13 to bound probabilities of the form P(τx >

α, τy 6 β), where β < α. This is intuitively possible since we may run the particle vy that reaches
By and bound the probability that it never reaches Bx in a time longer than α− β, where we have
used the strong Markov property of the random walk. There is, however, a subtle issue for the
survival of the branching process initiated by the particle vy , as this event is almost independent
of the survival event S we are conditioning on (in the proof of Theorem 2). We will bypass this
difficulty by excluding this termination event a priori, or by first having an exponential number ecn

of particles in By instead of a single particle vy.
Recall our notations beginning Section 2 and denote by q = 1− p = 1− P(S).

Proof of Theorem 2. Pick C3 and c4 as in Lemma 12 and let δ ∈ (e−c13/(2C3), 1) for some c13 > 0 to
be determined. For x, y > 0, let

s = s(x, y) := inf{t > 0 : P(τx 6 t | S) > δy}.

It follows that P(τx < s− 1 | S) 6 δy and

P(τx > s+ 1) 6 1− pδy 6 exp(−pδy). (30)

Let k = y/C3 and set C5 ≫ a + C6 + C7, all to be determined. Denote by τ
(c11)
x+k the waiting time

until ec11k many particles reach the ball Bx+k. Now note that

P(τx > s− 1) 6 P(s− 1 < τx < s+ C5k) + P

(
τ
(c11)
x+k > s+ C3k + 1 + C6C7k

)

+ P

(
τx > s+ C5k, τ

(c11)
x+k 6 s+ C3k + 1 + C6C7k

)
.

(31)
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We first decompose the second event τ
(c11)
x+k > s+C3k+1+C6C7k of (31) depending on the number

of particles at time C3k that lie beyond k in the x-coordinate. On one hand, by Lemma 12,

P(#{v ∈ VC3k : ηv,C3k(C3k) > k} < ec4k) 6 q + o(e−c4k).

On the other hand, on the event that #{v ∈ VC3k : ηv,C3k(C3k) > k} > ec4k, we may label ec4k

many particles by {vi}16i6ec4k . Our goal is to show that the probability that fewer than ec11k of
{vi}16i6ec4k reach Bx in the period of time [C3k, C3k + s + 1 + C6C7k] is small. Note that the
trajectories for each i in the period [C3k, C3k+s+1+C6C7k] are independent and equivalent in law
to a BRW trajectory initiated at ηv,C3k(C3k). A technical difficulty arises, however, as the events
of reaching Bx are not monotone in x in dimensions d > 2. It would be nice if we had stochastic
monotonicity for τx in x (as in the one-dimensional case), but this appears out of our reach. Instead,
we use the following argument to bypass this technical difficulty.

Recall that each ηvi,C3k(C3k) > k, and the notation x = (x, 0 . . . , 0) ∈ Rd. By a standard large
deviation estimate on the last d−1 coordinates of ηvi,C3k(C3k) and using the triangle inequality, we
may assume that ‖x− ηvi,C3k(C3k)‖ 6 x+C6k for all 1 6 i 6 ec4k by losing an event of probability
O(e−c12k) with c4 chosen small enough. Similarly, we may assume ηvi,C3k(C3k) 6 C8k with an
overwhelming probability of at least 1−O(e−c12k) (since there are ec4k many particles in total and
we can apply a union bound). As a consequence,

P
(
∀1 6 i 6 ec4k, x− C8k 6 ‖x− ηvi,C3k(C3k)‖ 6 x+ C6k

)
> 1−O(e−c12k).

For each 1 6 i 6 ec4k, consider the set of xi’s such that ‖xi − ηvi,C3k(C3k)‖ = x. Selecting C6 > C8

and on a set of overwhelming probability of at least 1 − O(e−c12k), we can select xi such that
‖x− xi‖ 6 C8k. For z ∈ Rd, we denote by τz the FPT to the ball of radius one centered at z.
By Lemma 13 applied with C4 = C7/2 and picking C7 large (and without loss of generality, a p/2
proportion of the ec4k many particles do not terminate, by losing an exponentially small probability),

P

(
#{1 6 i 6

p

2
ec4k, τx−ηvi,C3k(C3k) > s+ 1 + C6C7k} > ec11k

)

6 P

(
#{1 6 i 6

p

2
ec4k, τxi−ηvi,C3k(C3k) > s+ 1} > ec11k

)
+O(e−c12k)

+ P

(
∃1 6 i 6

p

2
ec4k, τx−ηvi,C3k(C3k) > s+ 1 + C6C7k, τxi−ηvi,C3k(C3k) < s+ 1

)

6 P

(
#{1 6 i 6

p

2
ec4k, τxi−ηvi,C3k(C3k) > s+ 1} > ec11k

)

+
∑

16i6ec4k

P

(
τ
(i)
C6k+1 > C6C7k

)
+O(e−c12k)

6 P

(
Bin(

p

2
ec4k,P(τx > s+ 1)) > ec11k

)
+ ec4ke−c10k +O(e−c12k).

Here and later, we use Bin(n, p) to denote a generic binomial random variable with n trials and
success probability p. By choosing c4 and then c11 small enough and using (30), we obtain that the
above satisfies

P

(
Bin

(p
2
ec4k,P(τx > s+ 1)

)
> ec11k

)
+ e(c4−c10)k +O(e−c12k)

6 exp(−pδyec13k) +O(e−c14k).

Inserting back to (31) and using Lemma 13 on the second term of (31), we have

P(τx > s− 1) 6 q + exp(−pδyec13k) +O(e−c14k) + P(s− 1 < τx 6 s+ C5k). (32)

Since δ ∈ (e−c13/(2C3), 1) and k = y/C3, for y large enough we have exp(−pδyec13k) 6 δy. Thus, we
conclude from (32) that

P(τx > s+ C5k) 6 q +O(e−c15y). (33)
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For q > 0, using the fact that P(#Vn > 0 | Sc) = o(e−c16n) (this is a consequence of Theorem
13.3 of [5]), we obtain

P(τx > s+ C5k) > pP(τx > s+ C5k | S) + q P(τx > y, #Vy = 0 | Sc)

> pP(τx > s+ C5k | S) + q(1− o(e−c16y))− C9P(τx 6 y, Sc).
(34)

Again by using P(#Vn > 0 | Sc) = o(e−c16n), we have for some c17 to be determined later,

P(τx 6 y, Sc) 6 o(e−c17c16y) + P(τx 6 c17y).

Recall that Mn denotes the maximum in the first direction of the BRW at time step n. Using Lemma
5.2 of [29], it holds that for M̃j denoting the maxima of #Vj many independent random walks,

P(τx 6 c17y) 6

c17y∑

j=1

P(Mj > x) 6

c17y∑

j=1

P(M̃j > x).

It is straightforward to show using a Chebyshev argument that uniformly for y 6 x, with c17 small
enough, the right-hand side is bounded by e−c18y. Inserting into (34) yields

P(τx > s+ C5k) > pP(τx > s+ C5k | S) + q − C10e
−c19y.

Using (33), it then holds that
P(τx > s+ C5k | S) ≪ e−c19y.

We conclude that for y 6 x large enough,

P(s− 1 6 τx 6 s+ C5k | S) > 1− δy −O(e−c19y) > 1−O(e−c20y).

Therefore, for some y0 > 0 large enough, P(s − 1 6 τx 6 s + C5y0/C3 | S) > 4/5, so that

s− 1 6 t
(1/2)
x 6 s+ C5y0/C3. For y > 2C5y0/C3, we then have

P

(
|τx − t(1/2)x | > y | S

)
6 1− P

(
s− 1 6 τx 6 s+

y

2
+

C5y0
C3

| S
)

6 O(e−c20C3y/(2C5)).

This establishes (5).

2.4 Proof of Theorem 3

First, let us recall our notations. Let Λ(λ) = logφξ(λ) = logE[eλ·ξ] and I(x) be its Fenchel-
Legendre transform, which coincides with the large deviation rate function for the jump distribution
ξ. The unique positive solution to I(ĉ1,0) = log ρ is given by ĉ1. Our goal is to prove that

τx = Â(x) + oP(log x), where

Â(x) :=
x

ĉ1
+

(
d+ 2

2ĉ1∂x1I(ĉ1,0)

)
log x.

2.4.1 Random walks in cones

For estimating τx, we need a few preliminary results on random walks and Brownian motion in
cones. The intuitive reason why random walks in cones come into play is explained in Figure 3.
In this section, we try to be self-contained and summarize only the necessary results. We refer to
[6, 19, 20, 23] for more background on this topic.
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Figure 3: Visualization of how random walks in cones are related to estimating first passage times.
The first passage time τx is roughly the time when the growing range (illustrated with the shaded
ellipses) of the BRW becomes tangent with the target ball Bx. In our proof, we will construct
moving cones (that are circular centered in the direction −c2 in the sense of (35); the boundaries
are indicated by the blue lines) and show that with high probability, the range of the BRW always
lies within the moving cones.

We first fix some notations. Let {Ui}i>1 be i.i.d. copies of U = (U1, . . . , Ud) in Rd and Sn =
U1 + · · ·+Un denote its partial sum. Consider an open connected subset S ⊆ Rd and let K be the
cone generated by the rays emanating from 0 ∈ Rd that go through S. For z ∈ K, let

τKz = min{n > 1 : z+ Sn 6∈ K}

be the first passage time of the random walk {Sn}n>1 to Kc, starting from z ∈ K. Similarly, let
τK,BM
z be the first passage time of the standard d-dimensional Brownian motion to Kc, starting from
z ∈ K. We will frequently consider cones that are circular (in the sense of [20]), that is, of the form

Kα(v) := {z ∈ Rd : 0 6 θ < α}, (35)

where α ∈ (0, π),0 6= v ∈ Rd, and θ = θ(z,v) is the angle between nonzero vectors z and v in Rd.
In the case v = (1,0), we may write Kα = Kα((1,0)).

The following result combines several results of [23].

Lemma 14. Suppose that U is centered, non-lattice, and E[UiUj] = 1{i=j}. Let x,y ∈ K. There

exist positive functions V, Ṽ satisfying max(V (x), Ṽ (x)) 6 C(1 + ‖x‖)p and

P(x+ Sn ∈ By, τ
K
x > n) ≪ V (x)Ṽ (y)

np+d/2
, (36)

where p = p(K) is such that P(τK,BM
x > t) ≍ t−p/2. Moreover, for fixed y ∈ K,

P(x+ Sn ∈ By, τ
K
x > n) ≍ V (x)

np+d/2
. (37)
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Proof. The asymptotic (37) is a direct consequence of (1), Theorem 6, and Lemma 13(b) of [23].
On the other hand, (36) follows from the derivation of Lemmas 27 and 28 therein, along with their
Theorem 1. The results in [23] are stated in the lattice case but non-lattice walks can be proved in
the same way.

Remark 2. As commented in [23], if U does not satisfy E[UiUj ] = 1{i=j} but has a positive definite
covariance matrix, then the same results hold with K replaced by MK = {Mx : x ∈ K}, where
V = MU satisfies E[ViVj ] = 1{i=j}.

The exponent p(K) is in general not explicit and is related to the smallest eigenvalue of the
Laplace-Beltrami operator; see [23]. However, it suffices for our purpose to understand the behavior
of p(K) when K is a circular cone that is close to a half-space. The following result shows that p ≈ 1
if the circular cone K is close enough to a half-space.

Lemma 15 (Section 3 of [19]). Let α ∈ (0, π) and z ∈ Kα be arbitrary. There exists a decreasing
and continuous9 function pα,d such that pπ/2,d = 1 and

E[(τKα
z )q/2] < ∞ ⇐⇒ qα <

π

2
.

The following ballot-type lemma provides bounds when the cone is shifted by a function of time,
borrowing ideas from Lemma 2.3 of [13]. We do not attempt the sharpest bound here, but state the
minimal result needed for our purpose.

Lemma 16. Let v ∈ Rd, v 6= 0, and α ∈ (0, π). Let p = p(Kα(−v)) be the exponent defined in
Lemma 14, p′ < p, and C > 0. Then uniformly in z,y ∈ Rd such that z− y ∈ Kα(−v) and n ∈ N,

P(Sn ∈ Bz; ∀1 6 k 6 n, Sk − y − C log(min(k, n− k))+v ∈ Kα(−v))

≪ (1 + ‖z‖)p(1 + ‖y‖)p
np′+d/2

.
(38)

Moreover, uniformly for n ∈ N, 1 6 ℓ 6 n, and z,y ∈ Rd with z − y ∈ C log(min(ℓ, n − ℓ))+v +
Kα(−v),

P(Sℓ ∈ Bz; ∀1 6 k 6 ℓ, Sk − y − C log(min(k, n− k))+v ∈ Kα(−v))

≪ (1 + ‖z‖)p(1 + ‖y‖)p
np′+d/2

.
(39)

Proof. Let ỹ = −y − (C log n)v and z̃ = −z− (C log n)v. We have by using (36) of Lemma 14,

P(Sn ∈ Bz; ∀1 6 k 6 n, Sk − y − C log(min(k, n− k))+v ∈ Kα(−v))

6 P(Sn ∈ Bz; ∀1 6 k 6 n, Sk − y − (C logn)v ∈ Kα(−v))

= P(ỹ + Sn ∈ Bz̃; ∀1 6 k 6 n, ỹ + Sk ∈ Kα(−v))

≪ (1 + ‖ỹ‖)p(1 + ‖z̃‖)p
np+d/2

≪ (1 + ‖y‖)p(1 + ‖z‖)p
np′+d/2

.

This completes the proof of (38). The proof of (39) is similar and is omitted here for brevity.

9The continuity is not explicitly stated in [19], but follows from the continuity of the hypergeometric function.
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2.4.2 A large deviation computation

In the following, we work with a sequence {ξj = (Xj ,Yj)}j∈N of i.i.d. centered random variables
in Rd that are not necessarily spherically symmetric but have densities belonging to Lr(Rd) for some
r > 1 and a positive definite covariance matrix V . Let Λ(λ) = logφξ(λ) = logE[eλ·ξ] and I(x) be
its Fenchel-Legendre transform.10 Let also c2 = ∇I(x/n,0). By definition,

Λ(c2) = c2 ·
(x
n
,0
)
− I

(x
n
,0
)
. (40)

We have the following counterpart of Proposition 10. The proof is similar and deferred to the
appendix.

Proposition 17. Fix a large constant C > 0 and a dimension d > 1. Suppose that the Rd-valued
random variable ξ satisfies conditions (A2), (A5), and (A6) from Section 1.1. Let (Xj ,Yj) be a
sequence of i.i.d. random variables with the same distribution as ξ and (X,Y) =

∑n
j=1(Xj ,Yj).

Fix c > c > 0.

(i) Uniformly for any c = c(n) ∈ [−C logn,C logn] and any x ∈ [c n, c n],

P(Y ∈ B0(1) | X > x+ c) ≪ e−nI(x/n,0)−c2·(c,0)n−(d−1)/2enI(x/n)+cI′(x/n). (41)

(ii) Fix a(n) → ∞ and a(n) = o(logn). Uniformly for y with ‖y‖ 6 C
√
n and c ∈

[−C logn,C logn], and any x ∈ [c n, c n],

P(Y ∈ By(1) | X ∈ [x+ c, x+ c+ a(n)])

≫ e−nI(x/n,0)−c2·(c,y)n−(d−1)/2enI(x/n)+cI′(x/n).
(42)

2.4.3 Upper bound of Theorem 3

Let ε > 0 be arbitrary and

n = Â1(x) =
x

ĉ1
+

(
d+ 2 + 2ε

2ĉ1∂x1I(ĉ1,0)

)
log x. (43)

Our goal is to show that the event {τx > Â1(x)} has a small probability. Define c2 := ∇I(x/n,0).
By definition,

Λ(c2) = c2 ·
(x
n
,0
)
− I

(x
n
,0
)
. (44)

We set up a barrier event. Pick α ∈ (0, π/2) such that pα,d = 1+ ε; cf., Lemma 15. Recall (35).
Let

P̂n :=

{
v ∈ Vn : ∀0 6 k 6 n, ηv,n(k)−

kx

n
∈ Kα(−c2)

}

and let

∆̂n,x :=
∑

v∈P̂n

1Ĥv,n(x) :=
∑

v∈P̂n

1{ηv,n(n)∈Bx} (45)

be the number of particles lying in the target Bx at time n = Â1(x) that is controlled by the barrier

given by P̂n. The quantity ∆̂n,x serves as a lower bound for the number of particles lying in the
target Bx at time n. As a consequence, it suffices to show that

P(∆̂n,x > 1) > 1/C (46)

10Not to confuse with the functions Λ and I for the first coordinate which is defined on R, since we may assume
d > 2.
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for some C > 0 independent of x, which in turn gives the upper bound for τx by Theorem 2. We
compute first and second moments for ∆̂n,x. Define

Q̂n := {v ∈ Vn : ∀0 6 k 6 n,ηv,n(k) ∈ Kα(−c2)} .
Applying the change of measure (71) and using a similar change of measure argument as in the proof
of Proposition 17, we have

E[∆̂n,x] = ρnP
(
v ∈ P̂n,ηv,n(n) ∈ Bx

)
≫ ρne−nI(x/n,0)Q

(
v ∈ Q̂n, ‖ηv,n(n)‖ 6 1

)
.

By (37) of Lemma 14,

Q

(
v ∈ Q̂n, ‖ηv,n(n)‖ 6 1

)
≍ n−pα,d−d/2 ≍ x−pα,d−d/2.

Here, we may without loss of generality replace c2 by Mc2 where EQ[(Mξ)i(Mξ)j] = 1{i=j}. This
does not affect the analysis since an invertible linear transformation of a half-space containing 0 is
a half-space containing 0 and we are in a regime where pα,d ≈ 1; see Remark 2. Using (43), we have
the approximation

nI
(x
n
,0
)
=

log ρ

ĉ1
x+

(
(d+ 2 + 2ε) log ρ

2ĉ1∂x1I(ĉ1,0)
− (d+ 2 + 2ε)

)
log x+O(1).

These altogether lead to

E[∆̂n,x] ≫ ρnρ−x/ĉ1ρ−(d+2+2ε) log x/(2ĉ1∂x1I(ĉ1,0))x(d+2+2ε)/2x−pα,d−d/2 = 1, (47)

where we used pα,d = 1 + ε.

Next, we compute the second moment of ∆̂n,x, following the same type of arguments that lead

to (19). Recall the definition of Ĥv,n(x) from (45). By conditioning on the closest integer point to
ηv,n(n − s) ∈ (n − s)x/n + Kα(−c2) and applying (36) of Lemma 14, for v ∼s w (recall that this
means that the distance of v and w in the genealogical tree is equal to 2s),

P

(
Ĥv,n(x) ∩ Ĥw,n(x)

)

≪
∑

y∈Kα(−c2)∩Zd

(
e−(n−s)I(x/n,0)−c2·y(max(1, n− s))−pα,d−d/2(1 + ‖y‖)2pα,d

)

×
(
e−sI(x/n,0)−c2·(−y)s−pα,d−d/2(1 + ‖y‖)2pα,d

)2

≪ e−(n+s)I(x/n,0)(max(1, n− s))−pα,d−d/2s−2pα,d−d
∑

y∈Kα(−c2)∩Zd

ec2·y(1 + ‖y‖)6pα,d .

By the definition (35),

∑

y∈Kα(−c2)∩Zd

ec2·y(1 + ‖y‖)6pα,d =

∞∑

j=0

∑

y∈Kα(−c2)∩Zd

y·(−c2)∈[j,j+1]

ec2·y(1 + ‖y‖)6pα,d

≪
∞∑

j=0

e−j(1 + j)12dpα,d ≪ 1.

As a consequence and using pα,d = 1 + ε, for v ∼s w,

P

(
Ĥv,n(x) ∩ Ĥw,n(x)

)
≪ e−(n+s)I(x/n,0)(max(1, n− s))−pα,d−d/2s−2pα,d−d

≪ ρ−(n+s)x(pα,d+d/2)(n+s)/n(max(1, n− s))−pα,d−d/2s−2pα,d−d.
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Therefore, by assumption (A1),

E[∆̂2
n,x] ≪ E[∆̂n,x] +

n∑

s=1

ρn+sP

(
Ĥv,n(x) ∩ Ĥw,n(x) for v ∼s w

)

≪ 1 +

n∑

s=1

x(pα,d+d/2)(n+s)/n(max(1, n− s))−pα,d−d/2s−2pα,d−d ≪ 1,

where in the last step we argue similarly as in the proof of Lemma 2.7 of [13]. Combined with (47)
and the Paley-Zygmund inequality leads to (46). This proves the desired upper bound.

2.4.4 Lower bound of Theorem 3

Fix ε > 0. Define

Â2(x) :=
x

ĉ1
+

(d+ 2− 2ε) logx

2 ĉ1∂x1I(ĉ1,0)
.

Our goal is to show that the event {τx 6 Â2(x)} has a small probability. We first consider the

number Mx of particles in Bx at time n = Â2(x). We find α ∈ (0, π) such that pα,d = 1 − ε/2.
Recalling c2 = ∇I(x/n,0) ∈ R+ ×Rd−1, we may assume that x/n 6∈ Kα(−c2). We may decompose
Mx =

∑n
ℓ=0 Mx,ℓ, where

Mx,n := #

{
v ∈ Vn : ηv,n(n) ∈ Bx; ∀0 6 k 6 n, ηv,n(k) ∈

kx

n
+ψn(k) +Kα(−c2)

}
,

where ψn(k) := (C1 + C2(log(min(k, n − k)))+) c2 for some C1, C2 > 0 to be determined, and for
0 6 ℓ 6 n− 1,

Mx,ℓ := #

{
v ∈ Vn : ηv,n(n) ∈ Bx; ∀0 6 k 6 ℓ, ηv,n(k) ∈

kx

n
+ψn(k) +Kα(−c2),

ηv,n(ℓ + 1) 6∈ (ℓ+ 1)x

n
+ψn(ℓ+ 1) +Kα(−c2)

}
.

Denote by {Sn}n>1 the random walk with i.i.d. increments {ξi}i>1. Applying the change of measure
(71) and (38) of Lemma 16, we have

E[Mx,n] = ρnP

(
Sn ∈ Bx; ∀0 6 k 6 n, Sk ∈ kx

n
+ψn(k) +Kα(−c2)

)

= ρne−nI(x/n,0)Q (Sn ∈ B0; ∀0 6 k 6 n, Sk ∈ ψn(k) +Kα(−c2))

≪ ρne−nI(x/n,0)n−pα,d+ε/4−d/2(1 + C1)
pα,d

≪ x−ε/4.

Next, we bound E[Mx,ℓ] for 0 6 ℓ 6 n − 1. We condition on the location of ηv,n(ℓ), which may
take value in ℓx/n+ψn(ℓ) +Kα(−c2). This leads to

E[Mx,ℓ] 6 ρℓ
∑

u∈Zd

u−(ℓx/n+ψn(ℓ))∈Kα(−c2)

P

(
∀0 6 k 6 ℓ, Sk ∈ kx

n
+ψn(k) +Kα(−c2), Sℓ ∈ Bu

)

× P

(
ξ ∈ −u+

(ℓ + 1)x

n
+ψn(ℓ + 1) + (Kα(−c2))

c

)
.

(48)
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We bound separately the above two probabilities for a fixed ℓ. Applying the change of measure (71)
and (39) of Lemma 16,

P

(
∀0 6 k 6 ℓ, Sk ∈ kx

n
+ψn(k) +Kα(−c2), Sℓ ∈ Bu

)

= e−ℓI(u/ℓ)Q
(
∀0 6 k 6 ℓ, Sk ∈ ψn(k) +Kα(−c2), Sℓ ∈ Bu−ℓx/n

)
.

≪ e−ℓI(u/ℓ)n−pα,d+ε/4−d/2(1 + C1)
pα,d

≪ ρ−ℓx−ε/4

∥∥∥∥u− ℓx

n

∥∥∥∥ e
−c2·(u−ℓx/n).

On the other hand, since the moment generating function of ξ exists in a neighborhood of c2, we
have for some δ > 0,

P(ξ ∈ Bx) ≪ e−(1+δ)c2·x.

It follows that for v ∈ Kα(−c2),

P

(
ξ ∈ −v +

x

n
+ψn(ℓ+ 1)−ψn(ℓ) + (Kα(−c2))

c
)

≪ exp

(
−(1 + δ) inf

y∈(Kα(−c2))c

(
c2 ·

(
y − v +

x

n
+ψn(ℓ + 1)−ψn(ℓ)

)))

6 exp

(
−(1 + δ) inf

y∈(Kα(−c2))c
(c2 · (y − v))

)
,

where we have used that (x/n,0) ∈ (Kα(−c2))
c.

Inserting the above estimates back to (48) with the change of variable v = u − (ℓx/n+ ψn(ℓ))
leads to

E[Mx,ℓ] ≪
∑

v∈Zd∩Kα(−c2)

x−ε/4 ‖v +ψn(ℓ)‖ e−c2·(v+ψn(ℓ))

× exp

(
−(1 + δ) inf

y∈(Kα(−c2))c
(c2 · (y − v))

)

≪ x−ε/4
∞∑

j=0

e−(1+δ)j
∑

v∈Zd∩Kα(−c2)
infy∈(Kα(−c2))c (c2·(y−v))∈[j,j+1]

‖v +ψn(ℓ)‖ e−c2·(v+ψn(ℓ))

≪ x−ε/10 max(1,min(ℓ, n− ℓ))−C2‖c2‖
2

×
∞∑

j=0

e−(1+δ)j
∑

v∈Zd∩Kα(−c2)
infy∈(Kα(−c2))c (c2·(y−v))∈[j,j+1]

‖v‖ e−c2·v,

where the last step follows from the definition of ψn(ℓ) and ψn(ℓ) ≪ logn ≍ log x. By elementary
geometry and properties of Kα(−c2), for j > 0,

∑

v∈Zd∩Kα(−c2)
infy∈(Kα(−c2))c (c2·(y−v))∈[j,j+1]

‖v‖ e−c2·v ≪ e−j .

Together we obtain

E[Mx,ℓ] ≪ x−ε/10 max(1,min(ℓ, n− ℓ))−C2‖c2‖
2

∞∑

j=0

e−δj

≪ x−ε/10 max(1,min(ℓ, n− ℓ))−C2‖c2‖
2

.
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We thus conclude with the following bound on E[Mx]:

E[Mx] =

n∑

ℓ=0

Mx,ℓ ≪ x−ε/4 + x−ε/10
n−1∑

ℓ=0

max(1,min(ℓ, n− ℓ))−C2‖c2‖
2

.

With C2 picked large enough, we have E[Mx] ≪ x−ε/10.
The rest of the arguments is standard. Recall the weaker bound of (11). If a particle reaches

Bx at time n− t where t = O(log x), the probability that one of its descendants is located in Bx at
time n is ≫ (log x)−d. On the other hand, E[Mx] ≪ x−ε/10 = o((log x)−d). As a consequence, with

probability o(1), there is no particle present in Bx before time n = Â2(x). This finishes the proof of
the lower bound of Theorem 3.

2.5 Proofs of remaining corollaries

2.5.1 Proof of Corollary 4

Denote by τx(r) the first passage time of the BRW to a sphere of radius r > 0 centered at
x = (x,0). Note that for a fixed r > 0, the proofs of Theorems 2 and 3 go through.

Using elementary geometry, we have

inf
x∈[n,n+1]

τx(1) > max(τn(2), τn+1(2)) (49)

and

sup
x∈[n,n+1/2]

τx(1) 6 min
(
τn
(1
2

)
, τn+1/2

(1
2

))
. (50)

Applying Theorems 2 and 3, we have for any fixed ε > 0,

∑

n∈N

P

(∣∣∣τn(2)
n

− 1

ĉ1

∣∣∣ > ε

)
+
∑

n∈N

P

(∣∣∣
τn/2(1/2)

n/2
− 1

ĉ1

∣∣∣ > ε

)
< ∞.

By Borel–Cantelli lemma,

τn(2)

n
→ 1

ĉ1
and

τn/2(1/2)

n/2
→ 1

ĉ1
a.s.

Applying (49) and (50) then yields that almost surely,

lim sup
x→∞

τx(1)

x
6

1

ĉ1
6 lim inf

x→∞

τx(1)

x
.

This proves Corollary 4.

2.5.2 Proof of Corollary 5

Denote by En the event that the range

Rn = {ηv,n(n) : v ∈ Vn}

is not (1/n)-dense in (n/C2)B0 (meaning that there exists y ∈ (n/C2)B0 with (y+(1/n)B0)∩Rn =
∅). To bound P(En) from above, we need a slight modification of Theorem 3 that applies for balls
of radii 1/n instead of a fixed radius. By performing the same analysis in Section 2.4.3, we have the
upper bound

τx,1/n 6
x

ĉ1
+ C1 log log x+OP(1),
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where τx,1/n denotes the first passage time to a ball of radius 1/n centered at (x,0) and C1 > 0. We
need to show that ĉ1 is large in all directions. For a d× d orthogonal matrix Θ, denote by ĉ1(Θ) the
ĉ1 corresponding to the BRW with jump distribution Θξ. It follows from assumption (A5) that the
domain of I contains a neighborhood of 0, and hence

inf
Θ

ĉ1(Θ) > 0. (51)

Applying (51) gives that there exists C2 > 0, so that τx,1/n,θ 6 (C2/2)x + OP(1) in all directions

θ ∈ Sd−1. Therefore, by applying Theorem 2,

P(En) 6

n/C2∑

j=1

Cjd−1 sup
θ∈Sd−1

P(τj,1/n,θ > n) 6

n/C2∑

j=1

Cjd−1e−n/C3 ≪ e−n/C4

for some C3, C4 > 0. Thus
∑

n P(En) < ∞. The rest arguments follow in the same way as Corollary
2.5 of [43].

Remark 3. We expect that using a similar argument, one can prove uniform versions of (4) and (7)
under stronger assumptions on I. For instance,

sup
Θ∈Sd−1

1

log x

∣∣∣τΘx −
( x

ĉ1(Θ)
+

d+ 2

2ĉ1(Θ)∂x1IΘ(ĉ1(Θ),0)
log x

)∣∣∣→ 0 in probability,

where IΘ is the large deviation rate function of Θξ.

3 Extensions and applications

3.1 The delayed branching model

In this section, we revisit the applications of BRW to modeling polymer networks. In partic-
ular, the FPT for the BRW to reach a unit ball at a distance of x can approximate the shortest
path (SP) between cross-links placed at a distance x away from each other in a polymer network.
Experimentally, obtaining the SP statistics is infeasible. However, extracting the SP statistics from
computational simulations of polymer networks using coarse-grained molecular dynamics (CGMD)
has been shown promising [50, 51]. As argued in [54], the SP statistics can be reproduced by FPT
statistics of a small variation of the classical BRW model (the reason of which will be explained
below), which we refer to as the delayed branching model.

Consider the classical BRW model satisfying p3 > 0 and p0 + p1 + p3 = 1 (i.e., only branching
instances are into three particles) with a spherically symmetric jump distribution (for simplicity).
The choice of branching into three particles is to be consistent with the real polymer network being
modeled where branching represents the cross-link (bond) between two polymer chains. The first
particle would correspond to the continuation of the first polymer chain beyond the point of cross-
link whereas, the other two particles would correspond to the segments of the second polymer chain
(see [54] for a detailed description).

The classical BRW assumes that the three particles emerge from the same point. However, the
more realistic picture states that the first and second chains are displaced at the point of branching
due to the presence of the cross-link. The delayed branching model is a modification of such a BRW
process, where at each branching event (in which the particle was supposed to give rise to three
offsprings), a particle branches into two, and one of the two descendants branches again into two
particles in the next time step.11 That is, the branching event (into three particles) is broken into two
pieces, one of which is delayed by one step. Thus, each branching event consists of two sub-events,

11A particle may die in each of the two branching sub-events.
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which we call types I and II respectively. Here, type I branching corresponds to the branching of
the parent, and type II branching corresponds to the branching of one of the two children born in
the type I sub-event.

Figure 4: BRW tree representations of polymer networks in the classical and the delayed branching
regimes. The red path from A to A′′ represents the first polymer chain and the blue path from B
to B′′ represents the second chain that cross-links with the first. In the BRW tree genealogy, the
particles A′′, B, and B′′ are the descendants of the particle starting from A.

We first derive the analogue for ρ (the parameter governing the growth of the number of particles)
in the classical BRW. By construction, the expected number Ñn of particles in the delayed branching
model at time n satisfies

Ñn+1 = p1Ñn + p3Ñn + 2p3Ñn−1(1− p0). (52)

The characteristic polynomial of the recursive equation (52) is given by

x2 − (p1 + p3)x− 2p3(1− p0). (53)

Denote the unique positive zero of (53) by

ρ̃ =
1− p0

2
+

√
(1 − p0)2

4
+ 2p3(1− p0). (54)

In particular, Ñn ≍ ρ̃n.
Let c̃1 satisfy I(c̃1) = log ρ̃ where the rate function I is defined in (1), and c̃2 = I ′(c̃1). We define

Ã(x) similarly as in (3) with c1, c2 replaced by c̃1, c̃2. The parameters p3 and p0 are denoted by
κ̃ and ν̃ in [54] respectively, where κ̃ represents the branching rate of the BRW and ν̃ represents
the death rate of the branches to account for the finite length of the polymer chains in the CGMD
simulation. Let τ̃x be the first passage time to Bx.

Theorem 18. Assume (A3) and (A4) with ρ replaced by ρ̃. Conditioned upon survival, we have the
asymptotic

τ̃x = Ã(x) +OP(log log x) =
x

c̃1
+

d+ 2

2c̃2c̃1
log x+OP(log log x). (55)

In other words, the collection {(τ̃x − Ã(x))/ log log x}x>0 is tight.

Theorem 18 partially resolves Conjecture 1 of [54]. We sketch its proof below, which will be very
similar to the proof of Theorem 1. A key ingredient in the proof of Theorem 1 is the analysis of
the expected number Nn of particles present at time n, conditioned upon survival. If the branching
events are independent across layers, then Nn = ρn. On the other hand, for the delayed branching
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BRW, due to the two-step branching regime, the branching events are not independent. The following
two lemmas perform a similar analysis related to the number of particles for the delayed branching
model. In particular, the analogue for our expected number of descendants for each particle, ρ,
becomes ρ̃ for the delayed branching model.

Lemma 19 (Lemma 5 of [54]). Conditioned upon survival, the expected number of particles Nn at
time n satisfies Nn ≍ ρ̃n.

Lemma 20. For 1 6 s 6 n, let

Nn,s := E[#{(v, w) ∈ V 2
n : v ∼s w}]

be the expected number of pairs of particles at level n whose distance in the genealogical tree is equal
to 2s. Conditioned upon survival, Nn,s ≍ ρ̃n+s uniformly in 1 6 s 6 n.

Proof. By Lemma 19, the expected number of choices of the common ancestor u of v, w is Nn−s ≍
ρ̃n−s. We now fix u. Let Su denote the survival event of the underlying branching process initiated
from u. Let Nu,s and N ′

u,s denote the number of particles initiated from u in s steps conditioned on
S and Su respectively. By a coupling argument, if u initiates a branching sub-event of type I,

E[Nu,s1S ] > E[N ′
u,s1Su

] ≍ Ns ≍ ρ̃s.

Moreover, E[Nu,s1S ] can be controlled by the expected number of particles without conditioning
upon survival, which is≍ ρ̃s. Otherwise, if u initiates a branching sub-event of type II, an extra factor
of 2 exists but will be absorbed into the asymptotics. Therefore we conclude that E[Nu,s | S] ≍ ρ̃s

(that P(S) ∈ (0, 1) has been proven in Lemma 5 of [54]), and hence Nn,s ≍ ρ̃n−s(ρ̃s)2 = ρ̃n+s.

We briefly identify the modifications required for the proof of Theorem 18. Note that the only
difference between the classical BRW and delayed branching BRW is the branching structure, i.e., the
underlying tree that describes the genealogy of the particles. Given that Theorem 2 holds, the proof
of Theorem 1 depends on such structure only through (17) and (18). The corresponding modifications
can be made by replacing ρ by ρ̃ in view of Lemmas 19 and 20. The proof of Theorem 2 depends on
large deviation estimates for the maximum of delayed branching BRW in (28). Nevertheless, this
applies by performing the same proof as in [29] by comparing against the maximum of independent
random walks (Theorems 3.1 and 5.2 therein). The other changes needed in Theorem 2 are minor
and will be omitted for brevity, as the constants can always be adjusted to take into account the
delayed branching property. Otherwise, the proof of Theorem 18 is almost verbatim.

The same arguments apply for non-spherically symmetric jumps, where we instead assume (A1),
(A2), (A5), and (A6) and replace Theorem 1 by Theorem 3.

3.2 Finer asymptotics for non-spherically symmetric jumps

We discuss a few cases with non-spherically symmetric jumps where the asymptotic (7) can be
improved. The only instance where we explicitly required spherical symmetry of the law of ξ for the
proof of Theorem 1 lies in the proof of Proposition 10, where we apply the change of measure (65).
More precisely, applying the exponential tilt only in the x-coordinate in (65) does not guarantee
that the random variable ξ is centered in other coordinates under the new measure; cf. (71).

In certain nice cases, the non-spherically symmetric case can be analyzed using the same ap-
proach. Let I be the large deviation rate function for the jump ξ and ĉ1 be such that I(ĉ1,0) = log ρ.
One may also define the constant c1 that arose in assumption (A4) for a non-spherically symmetric
jump ξ, through the relation I(1)(c1) = log ρ where I(1) is the large deviation rate function for the
first marginal of ξ. If ĉ1 = c1, we can show using essentially the same proof of Theorem 1 that

τx =
x

ĉ1
+

d+ 2

2ĉ1∂x1I(ĉ1,0)
log x+OP(log log x).

The following proposition gives a necessary and sufficient condition for this to happen for all ρ > 1.
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Proposition 21. It holds that ĉ1 = c1 for all ρ > 1 if and only if E[ξi | ξ1] = 0 for all 2 6 i 6 d,
where ξi denotes the i-th coordinate of the Rd-valued random variable ξ.

Proof. Since I(1) is strictly increasing on its domain intersecting (0,∞), an equivalent condition for
ĉ1 = c1 for all ρ is that I(1)(c1) = I(c1,0) for all c1. By definition, this amounts to

sup
λ1∈R

(
λ1c1 − E[eλ1ξ1 ]

)
= sup

λ1,...,λd∈R

(
λ1c1 − E[eλ·ξ]

)
.

Since the range of I ′ is R+, this is equivalent to

∀λ1 ∈ R, inf
λ2,...,λd∈R

E[eλ·ξ] = E[eλ1ξ1 ].

By taking partial derivatives with respect to λi at λi = 0, 2 6 i 6 d, we obtain that for each
2 6 i 6 d, E[ξie

λ1ξ1 ] = 0. Since this holds for all λ1 ∈ R, by the uniqueness of the Laplace
transform, we must have E[ξi | ξ1] = 0. The reverse direction is obvious by Jensen’s inequality.

There is yet a different method to deal with distributions on Rd that can be transformed into a
spherically symmetric distribution under an invertible linear transformation of space. Suppose that

ξ
law
= T (ζ) for some spherically symmetric distribution ζ and invertible linear map T . The FPT for

the BRW with jump ξ to Bx is then equivalent to the FPT for the BRW with jump ζ to T−1(Bx).
Since Theorem 1 holds with the radius of the ball replaced by any constant (with the same proof)
and T is invertible, we may without loss of generality replace T−1(Bx) by BT−1x, where x = (x,0).
This leads to

τx =

∥∥T−1x
∥∥

ĉ1(ζ)
+

d+ 2

2ĉ1(ζ)∂x1Iζ(ĉ1(ζ),0)
log x+OP(log log x). (56)

Summarizing the discussions above, we arrive at the following.

Theorem 22. Assume assumption (A1). Suppose that either of the following holds:

(i) the law of ξ = (ξ1, . . . , ξd) satisfies E[ξi | ξ1] = 0 a.s. for all 2 6 j 6 d, and satisfies (A2) and
(A4);

(ii) there exists an invertible linear transformation T on Rd with ξ
law
= T (ζ) for some spherically

symmetric distribution ζ satisfying (A2)–(A4).

Then the first passage time τx has the asymptotic

τx =
x

ĉ1
+

d+ 2

2ĉ1∂x1I(ĉ1,0)
log x+OP(log log x). (57)

Proof. By comparing (56) and (57), it suffices to show for case (ii) that

x

ĉ1(ξ)
=

∥∥T−1x
∥∥

ĉ1(ζ)
(58)

and that

ĉ1(ξ)∂x1Iξ(ĉ1(ξ),0) = ĉ1(ζ)∂x1Iζ(ĉ1(ζ),0). (59)

Let e1 = (1,0) ∈ Rd. By definition (2) and since T is invertible, Iξ(x) = Iζ(T
−1x). By spherical

symmetry of ζ,

Iξ(ĉ1(ξ),0) = Iζ

(
T−1(ĉ1(ζ),0)

‖T−1e1‖

)
= Iζ

(∥∥T−1(ĉ1(ζ),0)
∥∥

‖T−1e1‖

)
= Iζ(ĉ1(ζ),0),
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proving (58). Denote the radial component of Iζ by f . By applying the multivariate chain rule, we
have

∂x1Iξ(ĉ1(ξ),0) = ∇Iζ(T
−1(ĉ1(ξ),0)) · ∂x1T

−1(ĉ1(ξ),0)

= f ′
(∥∥T−1(ĉ1(ξ),0)

∥∥) T−1(ĉ1(ξ),0)

‖T−1(ĉ1(ξ),0)‖
· T−1e1

= f ′ (ĉ1(ζ))
ĉ1(ξ)

∥∥T−1e1
∥∥2

ĉ1(ζ)

= ∂x1Iζ(ĉ1(ζ),0)
∥∥T−1e1

∥∥ .

Combined with (58), this establishes (59).

Condition (i) handles the case where the law of ξ is given by a product measure. The condition (ii)
above is satisfied, e.g., for centered non-degenerate elliptical distributions. In particular, this applies
to non-degenerate Gaussian distributions, which we explicitly compute in the following example.

Example 23. Suppose that ξ is centered Gaussian with an invertible covariance matrix Σ = AA⊤.
In this case, ξ = Aζ where ζ is standard Gaussian. In this case, Iξ(x) = x⊤Σ−1x/2, so that

ĉ1 =
√
2 log ρ/(Σ−1)11 and ∂x1I(ĉ1,0) =

√
2(log ρ)(Σ−1)11. By Theorem 22, we have

τx =
x√

2 log ρ/(Σ−1)11
+

d+ 2

4 log ρ
log x+OP(log log x).

One can check indeed that this also follows from (56), using
∥∥A−1x

∥∥ = x
√
(Σ−1)11 where x = (x,0).

4 Numerical analysis

In this section, we test Theorem 3 numerically. Since tracking the locations of all particles
in a BRW is time-consuming and memory-intensive, we introduce a path-purging algorithm that
removes particles that are highly unlikely to have descendants that realize the first passage time.12

A preliminary version of the algorithm for spherically symmetric jumps can be found in Section 2.3
of [54].

Recall that I denotes the large deviation rate function of the jump distribution ξ. In the path-
purging algorithm, we purge along the normal vector

n = ∇I(ĉ1,0). (60)

That is, we retain particles that have the qc/2 largest inner product with n, where qc is a prefixed
large number. To intuitively justify this, suppose that a particle is found at x′ = (x′,0) where
x′ < x. The expected time for the BRW initiated at x′ to arrive at Bx is around (x − x′)/ĉ1. In
order for another particle located at x′ + v to reach Bx within roughly the same amount of time,
we need

e−(x−x′)I(ĉ1,0)/ĉ1 = e−(x−x′)I(ĉ1(x−x′−v)/(x−x′))/ĉ1 .

For small v, this holds if and only if v · ∇I(ĉ1,0) = 0, independent of the choice of x′.
If ξ is spherically symmetric, or satisfies condition (i) of Theorem 22, the normal vector n is then

parallel to the direction towards the termination site x = (x,0).
In our implementation, we take qc = 9000 and consider BRW where particles only branch into

three (i.e., {i > 1 : pi > 0} = {3}) in dimension d = 3. At times, we also consider the delayed

12An efficient algorithm that simulates the tip of one-dimensional BBM has been proposed in [18]. Unfortunately,
the arguments therein do not seem to carry over to general BRWs in higher dimensions.
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Figure 5: The numerical 3D BRW obtained c1 compared against the reference calculations at different
p3 for the (a) classical BRW and (b) delayed branching BRW with p0 = 0.004. The mean of the
FPT at each x is computed from 2000 samples.

branching model from Section 3.1. We compute the first passage times for offspring distributions
with p3 ∈ {0.05ℓ : 1 6 ℓ 6 19} and p1 = 1 − p3 (meaning p0 = 0, unless otherwise stated) while
varying x and the distribution of ξ. We showcase the following two cases:

• In Section 4.1, we discuss the case where ξ is uniformly distributed on S2.

• In Section 4.2, we deal with Gaussian distributions with a general covariance matrix.

Finally, we note that the main result of [30] shows that there rarely exists an infinite path in a
one-dimensional BRW that always stays above the curve n 7→ (c1 − ε)n for ε > 0 small. While this
suggests that our path purging algorithm cannot be backed up by theory for a fixed qc as x → ∞,
the simulations work effectively well in the regime where qc is quite large compared to x.

4.1 Uniform distribution on the sphere

Consider when ξ is uniformly distributed in S2, i.e., we are in the spherically symmetric case.
The statistic that we compare is the coefficient of the linear term for the estimation of τx in (4).
For any given p3 ∈ {0.05ℓ : 1 6 ℓ 6 19}, in the numerical BRW simulation, we calculate the FPT
distribution at different offset distances, x ∈ {0.25Lx, 0.5Lx, 0.75Lx, Lx}, where Lx = 65.5. The
mean FPT E[τx] is then fit to a function of the form

E[τx] =
x

c1
+B log x+ C. (61)

The numerical implementation validates the theoretical predictions to the classical and delayed
branching BRW models, as shown in Figure 5. This also indicates that the numerical approximation
of path purging does not affect the linear coefficient of the scaling behavior of the FPT distribution,
and can be used as a suitable approximation for carrying out the numerical BRW simulations. The
error between the theoretical and numerical implementation can be attributed to the limited range
of x over which the fit of (61) is executed. Figure 5 suggests that classical model requires a smaller
range of x for the FPT evaluation for a higher fidelity estimation of c1 in comparison to the delayed
branching model. Figure 6(a) shows the FPT distribution at different x. Figure 6(b) shows the
linear increase in the mean FPT (negligible logarithmic effect), whereas the Figure 6(c) validates
the asymptotic in (55) by showing a negligible change in the standard deviation of FPT distribution
with the increase in the offset distance, x.
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Figure 6: (a) The FPT distributions at different values of x for the classical BRW. The (b) mean
and (c) standard deviation of the SP as a function of x, respectively. The data points correspond to
x = 0.1Lx, 0.15Lx, 0.2Lx, 0.25Lx, 0.5Lx, 0.75Lx, Lx and p3 = 0.0856 for the classical BRW, where
Lx = 65.5. The mean of the FPT at each x is computed from 500 samples.

4.2 Gaussian distributions

Suppose now that the jump ξ is centered Gaussian with a positive definite covariance Σ.
We have Λ(λ) = λ⊤Σλ/2 and I(x) = x⊤Σ−1x/2. In particular, c2 = ∇I(x/n,0) =
((Σ−1)11x/n, . . . , (Σ

−1)1dx/n) and Λ(c2) = (x/n)2(Σ−1)11/2. By (60), the normal vector n is a
constant multiple of Σ−1e1, where e1 = (1,0) ∈ Rd. If Σ is diagonal (independent jumps), the
normal vector n is then parallel to the direction of the termination site x. This is the case in our
previous work [54] as opposed to the general case of non-spherically symmetric and dependent jumps
that we will discuss in this section.

We look at three specific examples: (i) symmetric and independent (S.I.) jumps (presented
earlier [54]), (ii) non-symmetric and independent (N-S.I.) jumps, and (iii) non-symmetric and de-
pendent (N-S.D.) jumps. The corresponding covariances for the three cases are given by

ΣS.I. =



1 0 0
0 1 0
0 0 1


 , ΣN-S.I. =



1 0 0
0 1.5 0
0 0 0.5


 , ΣN-S.D. =




1 0.5 0.25
0.5 1.5 0.5
0.25 0.5 0.5


 .

We follow the same procedures as Section 4.1 that estimate the statistic ĉ1 in (7) through fitting
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Figure 7: The numerically obtained ĉ1 compared against the theoretical ĉ1 for Gaussian BRW with
(a) symmetric and independent (S.I.) jumps, (b) non-symmetric and independent (N-S.I.) jumps,
and (c) non-symmetric and dependent (N-S.D.) jumps. The mean of the FPT at each x is computed
from 10000 samples.

(61). Note that at any given p3, the ĉ1 is a function of (Σ−1)11. As a result, we expect the c1 of
the Gaussian BRW with S.I. and N-S.I. jumps to be identical as confirmed by our numerical results
in Figures 7(a) and 7(b). We use p0 = 0 for the comparison between the numerical and theoretical
results in this section. In the case of the N-S.D. jumps, the (Σ−1)11 is larger and we expect the
ĉ1 to be smaller. Figure 7(c) shows the agreement of the numerical implementation in being able
to capture the lower c1 at every p3. The agreement of the numerical results could be improved by
incorporating a larger number of paths for the computation of the mean FPT or by increasing the
range of x over which the mean FPT is computed to execute the fit in (61). To ascertain that 500
samples are sufficient to capture the mean, we present the mean FPT E[τx] at different values of
p3 at x = 65.5 for the Gaussian BRW with N-S.I. and N-S.D. jumps. Figure 8 confirms that the
statistics from 500 independent samples are sufficient to capture the mean of the distribution. This
confirms that the approximation of c1 can be improved by fitting the FPT values over a larger range
of x.
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Figure 8: The numerically obtained expected FPT compared against the theoretical asymptotic (7)
for Gaussian BRW with (a) non-symmetric and independent (N-S.I.) jumps and (b) non-symmetric
and dependent (N-S.D.) jumps. The mean of the FPT is calculated at x = Lx, where Lx = 65.5,
from 10000 samples.

5 Concluding remarks

In this paper, we studied the first passage times of an Rd-valued branching random walk (BRW)
to a shifted unit ball. The first passage time asymptotics consists of a linear term and a logarithm
correction term, as a function of the Euclidean distance of the target ball from the origin. We dis-
cussed extensions of this result to the delayed branching BRW model. As an immediate application,
we obtained theoretical predictions of the shortest path statistics for polymer networks consisting of
long chains and random cross-links. We conclude with a conjecture on finer asymptotics of the first
passage times.

The first passage times of the branching Brownian motion, the continuous-time sibling of the
BRW, possess better tractability due to its connection to the Fisher-KPP equation. It is proven in
Section 4.1 of [54] the finer asymptotic for the first passage times of a standard branching Brownian
motion that

τx =
x√
2
+

d+ 2

4
log x+OP(1), (62)

where the OP(1) is tight. We refer the readers to [54] for the proof and a detailed discussion. In
view also of the tightness result of Theorem 2, it is natural to postulate the following conjecture for
BRW. Recall the constant ĉ1 from Section 1.2.

Conjecture 1. Assume (A1)–(A4), or (A1), (A2), (A5), and (A6). Conditioned upon survival, the
first passage time for BRW in dimension d > 2 to Bx is given by

τx = A(x) +OP(1) =
x

ĉ1
+

d+ 2

2 ĉ1∂x1I(ĉ1,0)
log x+OP(1),

where the OP(1) is tight.

Conjecture 1 is also supported by our numerical simulations; see Figure 8.
The main technical obstruction to improving upon oP(log x) lies in the application of ballot

theorems—the cone K in Sections 2.4.3 and 2.4.4 cannot be simply replaced by a half-space as
certain sums would not converge (if this was the case, Conjecture 1 would hold). One possible
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approach is to develop bounds for random walks in time-dependent (and possibly non-circular)
cones, where K = Kn may depend on n, the number of steps in the random walk. The oP(log x) may
be improved if one applies such estimates in the case where Kn → Kπ/2(−c2) with a certain rate.
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A Large deviation estimates

In this appendix, we collect the deferred proofs of the large deviation estimates (Proposition 10
in Section 2.2.2, Lemma 11 in Section 2.3, and Proposition 17 in Section 2.4.2). We first quote a
result on a quantitative version of the central limit theorem for non-lattice distributions.

Lemma 24. Consider d > 2. Suppose that the radial component R of the spherically symmetric
random variable ξ has exponential moments and P(R = 0) < 1. Let λ ∈ Rd be such that EP[e

λ·X]
exists and define a probability measure Q by dQ/dP(x) := eλ·x/EP[e

λ·X] where P is the law of X.
Then the law of ξ under Q satisfies the strong non-lattice property

lim sup
|t|→∞

|EQ[e
it·ξ]| < 1. (63)

Moreover, consider an i.i.d. sequence {Xn}n>1 with the same distribution as ξ under Q with a

positive definite covariance matrix V and suppose that EQ[‖ξ‖3] < ∞. Then

sup
B

∣∣∣∣
1√
n

n∑

j=1

(Xj − EQ[Xj ])− µ0,V (B)

∣∣∣∣ = o(1),

where the supremum is taken over all boxes B ⊆ Rd and µ0,V is the Gaussian measure on Rd with
mean 0 and covariance V .

Proof. Let us first assume that P(R = 0) = 0. Denote by Ξ = (Ξ1, . . . ,Ξd) the uniform distribution
on Sd−1. Suppose that ξ1 = R1Ξ

(1) and ξ2 = R2Ξ
(2) are i.i.d. copies of ξ, and ζ = ξ1 + ξ2; since

each ξi is radially symmetric, Ri and Ξ(i) are independent. We first find the conditional density
zR1,R2(r, θ) of ζ under P given R1 and R2, where r and θ are the radial and polar components.
Observe that the conditional distribution of ζ given R1 and R2 is spherically symmetric. We have
conditionally,

P(‖ζ‖ > r | R1, R2) = P(‖(R1,0) +R2Ξ‖ > r)

= P
(
R2

1 + 2R1R2Ξ1 +R2
2 > r2

)
= P

(
Ξ1 >

r2 −R2
1 −R2

2

2R1R2

)
.
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By Theorem 2.10 of [26], for y ∈ [−1, 1] and some C(d) > 0,

P (Ξ1 > y) = C(d)

∫ y

−1

(1− t2)(d−3)/2dt.

Altogether it follows that for some C(d) > 0,

zR1,R2(r, θ) = C(d)r

(
1−

(
r2 −R2

1 −R2
2

2R1R2

)2
) d−3

2

, r ∈ [|R1 −R2|, R1 +R2], θ ∈ Sd−1.

Therefore, the conditional law of ζ under P, and hence also the unconditional law under Q, has a
density in Rd. If P(R = 0) > 0, the laws have densities except for an atom at zero, and the densities
are non-trivial since P(R = 0) < 1. By Lemma 4 in Section XV.4 of [27], (63) holds with ζ in place
of ξ, and hence (63) holds since ζ is a sum of two i.i.d. copies of ξ. The final claim follows from
Theorem 2(b) of [9].

Proof of Proposition 10. Let Λ(λ) = logφξ(λ) = logE[eλξ]. It is clear from (A2) that ξ is non-
lattice. The Bahadur-Rao theorem (Theorem 3.7.4 of [22]) then implies that uniformly in c ∈
[−C logn,C logn],

P(X > mn + c) ≍ e−nI((mn+c)/n)

√
n

≍ e−nI(c1)−(c−3 logn/2)I′(c1)

√
n

= nρ−ne−c2c. (64)

By definition c2 = I ′(c1), the constant c2 > 0 is such that the measure Q defined by

dQ

dP
(x) := ec2x−Λ(c2) (65)

satisfies that under Q, {Xi}i∈N are i.i.d. with mean c1. The random variable (X̃i,Yi) is then centered

under Q where X̃i = Xi − c1. Define X̃ := X̃1 + · · ·+ X̃n. It follows that

P(X > mn + c, Y ∈ B0(u(n)))

= enΛ(c2)EQ

[
e−c2X

1{X>mn+c,Y∈B0(u(n))}

]

≍ enΛ(c2)−mnc2

∞∑

j=c+1

e−c2jQ

(
X̃ ∈

[
j − 1− 3

2c2
logn, j − 3

2c2
log n

)
, Y ∈ B0(u(n))

)

= ρ−nn3/2
∞∑

j=c+1

e−c2jQ

(
(X̃,Y)√

n
∈
[j − 1− 3

2c2
logn

√
n

,
j − 3

2c2
logn

√
n

)
×B0

(u(n)√
n

))
.

Note that for j >
√
n, we may bound the probability from above by 1. For j 6

√
n, the sets

Ej,n :=
[j − 1− 3

2c2
logn

√
n

,
j − 3

2c2
logn

√
n

)
×B0

(u(n)√
n

)

are bounded as n → ∞. Therefore, by Lemma 24, with µ0,V denoting the centered Gaussian measure
with covariance matrix V on Rd,

Q

(
(X̃,Y)√

n
∈ Ej,n

)
= (1 + o(1))µ0,V (Ej,n) ≍ u(n)d−1n−d/2, (66)
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where the last step follows from the multivariate Gaussian density formula and that the positive
definite matrix V depends only on the law of ξ. Altogether this yields

P(Y ∈ B0(u(n)) | X > mn) ≪ (nρ−ne−c2c)−1ρ−nn3/2
∞∑

j=c+1

e−c2ju(n)d−1n−d/2

≪ u(n)d−1n−(d−1)/2.

This establishes (20).
Using a similar approach, we see that

P(X ∈ [mn + c,mn + c+ a(n)]) ≍ nρ−ne−c2c

and that

P(Y ∈ By(1), X ∈ [mn + c,mn + c+ a(n)])

≍ ρ−nn3/2

c+a(n)∑

j=c+1

e−c2jQ

(
(X̃,Y)√

n
∈
[j − 1− 3

2c2
logn

√
n

,
j − 3

2c2
logn

√
n

)
×B y√

n

( 1√
n

))

≫ ρ−nn−(d−3)/2e−c2c.

This proves (21). The same computation also yields

P(Y ∈ B0(K
√
n), X > mn + c) ≪ ρ−nn3/2n−1/2 = nρ−n,

where the asymptotic constant does not depend on K. Together with (64) completes the proof of
(22).

Proof of Lemma 11. We use a similar change of measure argument as in the proof of Proposition
10. Denote by I the large deviation rate function for the Rd-valued random variable ξ. For ĉ2 :=
∇I(z/(Ck)), we define the tilted measure Q by dQ/dP(x) := eĉ2·x−Λ(ĉ2), where we recall Λ = logφξ
is the log-moment generating function. Under Q, each ξi is i.i.d. with mean z/(Ck). It follows that

P((X,Y) ∈ Bz) = eCkΛ(ĉ2)EQ[e
−ĉ2·(X,Y)

1{(X,Y)∈Bz}]

≫ eCkΛ(ĉ2)−ĉ2·zQ

((
X√
Ck

,
Y√
Ck

)
∈ Bz√

Ck

)

= eCkΛ(ĉ2)−ĉ2·zQ

((
X̃√
Ck

,
Ỹ√
Ck

)
∈ B0√

Ck

)
, (67)

where each (X̃i, Ỹi) = (Xi,Yi)− z/(Ck) is a centered random variable. Using definition of ĉ2, we
have

Λ(ĉ2) = ∇I
( z

Ck

)
· z

Ck
− I
( z

Ck

)
. (68)

In addition, Lemma 24 yields

Q

((
X̃√
Ck

,
Ỹ√
Ck

)
∈ B0√

Ck

)
≫ (Ck)−d/2. (69)

Combining (67), (68), and (69) yields that

P((X,Y) ∈ Bz) ≫ e−CkI(z/(Ck))(Ck)−d/2.
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Recalling that I is convex, C1 on its domain, and I(0) = ∇I(0) = 0 (by Jensen’s inequality, E[eλ·ξ]
is minimized at λ = 0 when ξ is centered), we have

CI
( z

Ck

)
6 C sup

‖x‖2=C1

I
( x
C

)
6 C1 sup

‖x‖2=C1

∥∥∥∇I
( x
C

)∥∥∥
2
6

c3
2

for C > C2 as we pick C2 large enough. This concludes the proof.

Proof of Proposition 17. The Bahadur-Rao theorem yields that uniformly in c ∈ [−C logn,C logn],

P(X > x+ c) ≍ n−1/2e−nI(x/n)−cI′(x/n). (70)

Mimicing (65), define the probability measure Q by

dQ

dP
(x) := ec2·x−Λ(c2). (71)

It follows that EQ[ξ] = (x/n,0). That is, the random variable (X̃i,Yi) is then centered under Q

where X̃i = Xi − x/n. Define X̃ := X̃1 + · · ·+ X̃n. It follows that

P(X > x+ c, Y ∈ B0(1))

= enΛ(c2)EQ

[
e−c2·(X,Y)

1{X>x+c,Y∈B0(1)}

]

≍ enΛ(c2)−c2·(x,0)
∞∑

j=c+1

e−c2·(j,0)Q

(
X̃ ∈ [j − 1, j), Y ∈ B0(1)

)

= e−nI(x/n,0)
∞∑

j=c+1

e−c2·(j,0)Q

(
(X̃,Y)√

n
∈
[j − 1√

n
,

j√
n

)
×B0

( 1√
n

))

≍ e−nI(x/n,0)−c2·(c,0)n−d/2,

where in the last step we apply the same argument that leads to (66) and use that the first coordinate
of c2 is positive by our assumption x/n > c > 0. Altogether this yields (41).

Using a similar approach, we see that

P(X ∈ [x+ c, x+ c+ a(n)]) ≍ n−1/2e−nI(x/n)−cI′(x/n)

and that

P(Y ∈ By(1), X ∈ [x+ c, x+ c+ a(n)])

≍ enΛ(c2)−c2·(x,y)

c+a(n)∑

j=c+1

e−c2·(j,0)Q

(
(X̃,Y)√

n
∈
[j − 1√

n
,

j√
n

)
×B y√

n

( 1√
n

))

≫ e−nI(x/n,0)−c2·(c,y)n−d/2.

This proves (42).
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