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Abstract

Given a discrete-time non-lattice supercritical branching random walk in R?, we investigate its first passage
time to a shifted unit ball of a distance x from the origin, conditioned upon survival. We provide precise
asymptotics up to O(1) (tightness) for the first passage time as a function of z as x — oo, thus resolving a
conjecture in Blanchet—Cai-Mohanty—Zhang (2024). Our proof builds on the previous analysis of Blanchet—
Cai-Mohanty—Zhang (2024) and employs a careful multi-scale analysis on the genealogy of particles within a
distance of < log x near extrema of a one-dimensional branching random walk, where the cluster structure plays
a crucial role.
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1 Introduction and main contribution

We examine the first passage times of discrete-time non-lattice branching random walks in R¢. In our setting, a
branching random walk (BRW) is initiated by a single particle located at the origin 0 € R? at time n = 0. At each
time n+ 1, each particle at time n dies and independently reproduces its descendants according to some probability
law on the non-negative integers Ny with a mean greater than one. Each descendant then independently performs
a random walk step, collectively forming the set of particles at time n + 1. In particular, the underlying genealogy
of the particles resembles a supercritical Galton—Watson process. The first passage time (FPT) is by definition the
first time some particle is present in a prescribed subset of R¢. We refer the readers to a more formal definition
of BRW in Section 2.2 of [43]. In this paper, we focus on the first passage times to B, the unit ball centered at
(2,0,...,0) € RZ

In recent years, numerous studies have focused on BRW in dimension one. Let M,, denote the maximum position
of the particles in generation n (or equivalently, at time n). The precise asymptotics of M,, and the limit behavior
near frontier have been well-studied by [1, 2, 9, 10, 22, 23, 32], along with the references therein. In particular,
under mild conditions, it is shown that there exist constants c¢qi,co > 0 such that M, = cin — % logn 4+ O(1),
where the O(1) term converges in law to a randomly shifted Gumbel distribution. We refer to [3, 40, 43] for notes
on BRW and related topics, and Section 2.1 for some selected results useful for our purpose. In terms of FPT, the
only works we are aware of are [11, 24|, which characterized the law of large numbers and large deviation behavior
for the FPT of a one-dimensional BRW with a negative drift.

On the other hand, multi-dimensional BRW have been less studied. However, some of this body of work is
reported in [7, 8, 42, 45]. In particular, [7] investigated the asymptotic behavior of the maximum distance from the
origin for a spherically symmetric BRW in R? and established a precise asymptotic (up to an O(1) factor). In this
direction, we also mention recent but earlier studies on the maximum norm of branching Brownian motion (BBM)
in R by [6, 26, 27, 33].

Spatial branching processes, including both BRW and BBM, have a wide spectrum of applications ranging from
ecology to modeling epidemics ([17, 28, 29, 30|, among many others). More recently, motivated by problems from
polymer physics, the work [46] initiated the study of the first passage times of spatial branching processes. In
particular, it was noted therein that the precise asymptotic for the FPT of BBM follows from established results
on multi-dimensional Fisher-KPP equations with boundary value conditions ([16, 19, 39]). The follow-up work [§]
further investigated the FPT of BRW and obtained partial results. For the spherically symmetric case, they provide
asymptotics up to O(loglog x) using a particle genealogy approach. For the general case, they achieve asymptotics
up to O(logx) by analyzing random walks in cones. It was conjectured therein that the asymptotic should be
precise up to a tight O(1) factor, based on numerics and the following two pieces of theoretical evidence. First, the
FPT is exponentially concentrated around its median (Theorem 2 of [8]; see also Lemma 7 below). Second, the
analogous asymptotic holds for the BBM (Theorem 1 of [46]).

In this paper, we fully resolve the aforementioned conjecture on the FPT of BRW in R? by obtaining the
precise asymptotic. We do not require radial symmetry of the process. Our strategy builds in part on the particle
genealogy approach in [8] but requires new probabilistic ideas and a finer multi-scale investigation of the genealogy
of the one-dimensional BRW. In the subsections below, we state precisely our main result and explain the main
ideas underlying our proof.

1.1 Statement of the main results

Consider a discrete-time BRW model with offspring distribution {p;};>0, whose mean is denoted by p = >, i p;
and we assume that p > 1 (the supercritical case). Recall that for € R, B, denotes the ball of radius one centered
at (x,0,...,0) in R We let V,, denote the collection (i.e. set) of particles at time step n, and {1, (k) }o<k<n
denote the d-dimensional random walk that leads to v € V;,. Denote by 1, ,(k) € R (resp. 9, (k) € R4™1) the
first coordinate (resp. last d — 1 coordinates) of 1, ,, (k). We define the FPT 7, of the BRW to B,, that is,

Ty =min{n > 0:Jv €V, ny.(n) € By}



Let € be an R%valued random variable representing the increment distribution of the BRW. Denote the first
coordinate of £ by £, which is a real-valued random variable. We introduce the large deviation rate function

I(x) :=sup ()\x —log (bg()\)), (1)

A>0
where ¢¢()) := E[e*¢] is the moment generating function for £&. Consider the following assumptions:
(A1) the offspring distribution has a finite third moment, i.e., Zj J3pj < o0;
(A2) the law of £ is integrable and centered, i.e., E[£] = O;
(A3) the law of £ is spherically symmetric in R%,? and P(¢ = 0) < 1;
(Ad)

A4) logp € (ranl)°, where (ranl)° is the interior of the range of I. In other words, there exists ¢; > 0 such
that I(c1) = logp. It can be shown that ¢; € (ran(log¢¢)’)°. Let co = I'(c1). (The constants ci,co arise
naturally from the large deviations analysis of the random walk generated by the first-coordinate increment
distribution.)

Theorem 1. Assume (A1)-(A4). Conditioned upon survival, the first passage time for BRW in dimension d to
B, satisfies
x d+2

Te = —
C1 261C2

10gl‘—|—0]p(1), (2)

where the Op(1) is tight.

Based on consensus on spatial branching processes, a natural question arises: does the aforementioned Op(1)
term converge in law? If the answer is affirmative, how can we characterize the limit law? Unfortunately, the
current techniques developed in this work do not seem sufficient to tackle this question. We leave these challenging
questions for future investigation.

Let us now proceed to the non-spherically symmetric case. Let

~

I(x) := fgﬂgd ()\ -x — log ¢§()\)) = f;gd ()\ -x —log ]E[e*'g]) (3)

denote the large deviation rate function for £. We impose the following assumptions:

(A5) the law of £ is non-lattice in the sense that for all x € R%\ {0}, |E[¢™*¢]| < 1;

(A6) logp € (ranf(-, 0))°, where :f(7 0) refers to the function T with the last d— 1 variables fixed at zero; let ¢ > 0

~

satisfy I(c1,0) = log p, it holds (¢1,0) € (ranV log ¢¢)°.

~

Denote by ca = VI((¢1,0)), which is the value of A where the supremum (3) is attained at x = (¢1,0). The
assumption (Ab) is crucial for the non-degeneracy of the dimension d of the jumps. More precisely, (A5) implies
that any projection of £ (for instance, £ - c3) must also be non-lattice. Both conditions are necessary for the BRW
to reach the target ball B,. Another consequence of (A6) is that ¢¢ is well-defined in a neighborhood of cs.

Theorem 2. Assume (A1), (A2), (A5), and (A6). Conditioned upon survival, the first passage time for BRW in
dimension d to B, satisfies
x d+2

r — = Ail O 1a 4
g C]+20161-C2 oge -+ Op(l) @)

where e; := (1,0,...,0) € R? and the Op(1) term is tight.

The assumptions (A5) and (A6) are weaker than (A3) and (A4). Indeed, it is easy to see that (A3) implies
(A5), as a consequence of Lemma 24 of [8]; Proposition 21 therein also shows that (A3) and (A4) together imply
(A6). Consequently, Theorem 2 is more general than Theorem 1. However, in this paper, we will mainly focus on
the proof of Theorem 1. The proof of Theorem 2 is mostly verbatim, where the major changes will be pointed out
in Section 4.

1These assumptions are almost the same as those in [8], with the only exception of (A1), where we now require a finite third moment
on the reproduction law, instead of a finite second moment. This arises from purely technical reasons (see Appendix C.3).
2This means that the law of the jump £ is invariant under any orthonormal transformation in R%.



Remark 1. Our first passage time is defined in terms of a shifted ball of radius one. We expect that the same
proof techniques apply to balls of oscillating radii. For instance, one may consider balls of radii r(z) centered at
(2,0,...,0), where r(z) = O(1). The upper and lower bounds for 7, may be described in terms of r(x).

Remark 2. We also expect that the same technique applies to the branching Brownian motion, hence leading to a
probabilistic proof of the asymptotic behavior of the multi-dimensional Fisher-KPP equation with boundary value
conditions (as a complement of the works [16, 19]). Remarkably, our probabilistic proof does not specifically rely
on the Gaussian structure or any form of symmetry.

1.2 Outline of the proof

In the following, we write A < B if there exists a constant C' > 0 possibly depending on the law of the BRW
such that A< CB,and A=< Bif A< B < A.

Setup and main intuition. Let us assume that the BRW is spherically symmetric, and we condition upon
survival. In the spherically symmetric case, let us define

T d+2
t, == — I 5
= T g s, (5)

which is the anticipated asymptote of the FPT 7, (c.f. (2)), where we recall that I(c;) = logp, I'(¢1) = ¢o, and T
is the rate function for the first coordinate of €. Denote by M, the maximum at level n of a BRW with jump &,
and its asymptote m,, := cin — % log n.

We first explain the intuition behind the asymptote (5) and the main difficulties behind the proof of Theorem
1. By inverting the expression of m,,, one expects that the FPT to H, := [x,00) x R?~! is around

tf(bl) =2 + 3 log .
C1 20261

Indeed, m,1) = ¥ + O(1). As a result of the local CLT (under a change of measure and possibly under barrier

constraint; see Lemmas 9 and 14), each particle that arrives in H, has a chance around = landing in B,.
Suppose that we wait until the first P particles hitting H,, then on average there would be < 1 particles found
in B;. Meanwhile, it is certainly not the case that the displacements in the last d — 1 coordinates are almost
independent among the (x% many) frontier particles in the first coordinate, i.e., those that travel fast in the
first dimension. This is because the frontier particles may not be separated until very late, resulting in a strong
dependence between displacements in the last d — 1 coordinates. In other words, to study bounds of 7,,, one needs
to understand the genealogies (or the dependence structure) of the (roughly (log x)x% many) frontier particles
that are the fastest in the first dimension around time ¢,. Here, the quantity (log x)x% is the asymptotic of the
number of particles in H, at time t,, which has been computed by [8]; see Lemma 6 below.

Prelude: introducing the role of clusters in the genealogy of the frontier particles. The goal of the
paragraphs in this subsection is to expose a cluster structure that is useful in our analysis. We do this by introducing
a conditional probability (see (6) below) that captures key elements in our analysis, although we do not directly
study this probability in our future development, it is useful as a device to quickly see the main ingredients that
will come in to play. As we shall discuss later, the (non-trivial) genealogy of the frontier particles is reasonably
well understood. Suppose that we condition both, on the genealogy of the BRW up to time ¢, and BRW but only
its projection onto the first coordinate. Consider the set T'= {v € Vi, : My, (tz) € H,}, which is measurable and,
by the above discussion, it has cardinality #7" =< (log ;U)x% with high probability. Next, define the (conditioned)
locations of the particles v € T' in the rest d — 1 dimensions, written as {X, }ver := {7v.t, (tz) }oer. Recall that our
goal is to find a particle in B, at time t,, which is, roughly speaking, equivalent to finding a particle v € T such
that || X,|| < 1.% Here and later, we use ||-|| to denote the Euclidean norm. We are then reduced to the following
problem (after conditioning on the genealogy and the first BRW coordinate of the frontier particles): given an
R?~1valued stochastic process X = {X,},er where T is a finite set, how to characterize the probability

PEveT, X[ <1) (6)

3This is because a non-trivial proportion of particles in T' will be located in [z, z + 1/2] in the first coordinate, so we may simply
look at particles in Hy at time ¢;.



up to multiplicative constants, in terms of the dependence structure of {X, },er (keep in mind that the probability
in (6) is conditional, as stated earlier, so bounds on (6) are to be understood as high-probability bounds). Intuitively,
X, and X,, are strongly dependent if v and w are separated very late in the underlying genealogy, and vice versa.

While the problem (6) appears fundamental, we are unaware of a solution even in special cases.* There are a
few natural ideas for upper and lower bounding the quantity (6):

A) To bound P(3v € T, ||X,]|| < 1) from below, pick a subset 77 C T such that X, and X,, are approximately
independent for all v,w € T, v # w, and use P(Jv € T, ||X,|| < 1) as a lower bound.

B) To bound P(3v € T, || X,|| < 1) from above, partition T into "well-separated blocks" T1,...,Ty, that are
approximately independent (i.e., for any v € T;, w € T}, i # j, X, and X,, are roughly independent) and
such that the "size" of each block is small (and hence for each 1 < j < m, P(3v € T}, [|X,|| < 1) is small).”

In practice, these bounds work well if the set T has the following cluster structure: T can be partitioned into
well-separated blocks/clusters with very small sizes (for instance, consider the extreme case where {X, },er forms
an ii.d. sequence, or an identical sequence). Obtaining a characterization of (6) for a general process {X,}yer
is difficult, but is not necessary for our purpose since we are interested in the special class of processes X that
describes the genealogy of the extremal particles for a one-dimensional BRW. This highlights the importance of
understanding the cluster structure of extremal particles.

The cluster structure of extremal particles. Conditioning on the particle genealogy of those in H, at time
t., we effectively obtain a stochastic process {X,},er describing the displacements in the last d — 1 dimensions
of the frontier particles. In this case, we give upper and lower bounds for (6) that may not match in general, but
surprisingly, they coincide (up to multiplicative constants) with high probability. This is because of the following
nice feature of the one-dimensional BRW:

the frontier particles are most likely to be separated either
. . (7)
very early or very late in the underlying genealogy.
A precise formulation concerning a number of O(1) many frontier particles can be found in Theorem 4.5 of [34] in
the context of BRW, and Theorem 2.1 of [4] in the context of BBM. Loosely speaking, as n — oo, the particles
beyond m,, at time n are separated in either the first O(1) steps or the last O(1) steps with high probability. This
observation can be generalized to the study of around (log :c)md%l many frontier particles (or particles beyond x
at time t,), using an extension of Proposition 8 of [8]. For 0 < n < t,, we define the production number P,
as the number of particles at level n that allows a descendant beyond x in the first coordinate, at time ¢,. For
instance, Py = 1 and P,, < (log x)x% with high probability. We will prove in Proposition 8 that P, only has
non-trivial increase on the intervals n € [0,0((logz)?)] U [t, — O((log )?), t,]; see Figure 1 for an illustration. In
other words, the majority of the (roughly (log x)xdz;l many) particles beyond x at time ¢, are either separated in
the first O((logx)?) steps or the last O((log x)?) steps with a non-trivial probability.®
The effect (7) is related to entropic repulsion, which describes the phenomenon that a typical path leading
to maximum lies well below the interpolating line in most intermediate times because those locations well below
the interpolating line are not favorable as a branching location that leads to another extremal particle. Thus,
the overwhelming majority of the leading frontier particles will exhibit the entropic repulsion phenomenon. This
means that early on in the history of the BRW, leading particles’ induced "clusters" in the genealogy start being
formed early on (within (logz)? time), and by time ¢, there are roughly z(?~1/2 many clusters’ that are well
separated in the metric of the tree generated by the genealogy. More comprehensive discussions of the leading
particles’ genealogy can be found in [4, 12, 13, 21]. However, a major difference is that these works focused on
O(1) many frontier particles of the BBM, instead of < (log x)m% many frontier particles of the BRW. Another
technical difference is that their clusters classify all particles by the genealogical distance and are re-centered by
the maximum location in each cluster; in our case, we focus only on particles beyond a certain threshold (instead
of collecting all of them).

4A particularly interesting problem would be, for instance, assuming X is one-dimensional centered Gaussian (and hence written as
X), characterize (6) in terms of the distance dx (v, w) = VE[(Xv — Xw)?].

5This can be viewed as a simplified version of the generic chaining technique [41].

6Due to the nature of the second moment method we apply, we cannot conclude a with-high-probability statement. While we resolve
this issue by using the exponential concentration of the FPT (Lemma 7 below), we conjecture that such a property holds with high
probability.

"Note that this is a rather coarse approximation, each leading particle could form early on itself a random number of clusters, but
the expectation of this number is finite.



(log z)* t, — (logz)* ¢, n
Figure 1: Typical growth pattern of the production number P,. The plot in the interval [(logz)?,t, — (logx)?] is
almost flat, reflecting the fact that the only non-trivial increase arises from n < (logz)? or t, — n < (log z)?.

Turning to the picture of the process {X, }, e, this suggests that the set T enjoys the cluster structure suggested
earlier. Figure 2 illustrates this phenomenon. Roughly speaking, each element in the partition of 7" into blocks
then corresponds to a collection of particles that do not separate until time t,, — O((log x)?), or equivalently until
O((log x)?), meaning that these blocks are well-separated. As a consequence of Proposition 8, the number of such

blocks is around z 7" . By a conditional local CLT we establish below (Lemma 9), each block has a chance of

around x~ 2z of having a particle located in B, and these events for each block are approximately independent
(a key ingredient in A)). The upper bound for 7, then follows, which we elaborate on in Section 2.3.

On the other hand, turning to the block-size mentioned in B), it is nontrivial to show that the sizes of these
individual clusters are small. One can show that each cluster has size < log x, most have size < 1, and on average
has cardinality =< log z, but these pieces of information are not sufficient to conclude a matching upper bound for
(6). To proceed further, one needs the following crucial observation. There are two fundamentally different ways
to upper bound the "sizes" of individual clusters:

e The size of a cluster T} is small if it contains very few elements (i.e., its cardinality is small). In this case, we
use the union bound to obtain

PEveT), X, <1) < o~ T #T). (8)

e The size of a cluster T; is small if its "dispersion" is small, precisely, if E[sup, ,e7, [Xo — Xy || is small. In
this case, we expect that

PEveT), X <1) < x—dz;lE[ sup ||X, — Xol | 9)

v,weT);

In summary, our goal is to show that, with high probability, the random set T exhibits the cluster structure
explained, and most of the < T many clusters satisfy the following: either its cardinality is small, or its dispersion
is small. Equivalently, consider the collection P of particles at time ¢, := t, — (logz)? that lead to a descendant
beyond x at time t, (in the first coordinate). We need to show that with high probability, for most particles in
P, either each of these has very few descendants reaching x at time ¢,, or all of its descendants that reach x have
a very young common ancestor (so the dispersion is controlled with the help of a suitable conditional local CLT).
Achieving this goal is the most technical part of this paper. Below we attempt to sketch the intuition without going
into too many details.

Bounding the size of the clusters. The plan is to condition on an ancestor at time t, (as well as the first
coordinate of its location), discretize the space, and perform the following multi-step conditioning analysis of the
BRW in time [ty, t]:

e Look at a particle v € V5 that is near the location z — mog )2 — ¢, £ € Z.

e Consider the BRW process initiated at v. Condition on the heterogeneity index h of v, defined as the age of
the latest common ancestor of all particles present in [z, 00) at time ¢,, in the sub-tree initiated at v. For



n >z =y (T, dg)

< (logz)? T

T3

Figure 2: A typical cluster structure of the (random) set T'. Consider the metric dg on T defined as the genealogical
distance of two particles v, w € T (i.e., if u € V; is the latest common ancestor of v, w € V;_, then dg (v, w) = t, —¥).
Solid ellipses indicate the clusters. The set T consists of =< 2“7 clusters that are well-separated by distances of
order >> z; each of the clusters has diameter < (logz)?, in the metric space (T, dg). The dispersion of a cluster T;
can be measured as its radius in the metric dg. The set T7 has a large cardinality and a large dispersion; T, has a
small cardinality and a small dispersion; etc.

example, if only one descendant of v reaches [z,00) at time t,, then h = 1. If none reaches, then h = 0.
Obviously, h € [0, (logz)?] N Z.

e Condition on the event that the location of the latest common ancestor at time ¢, —h is near x—mp+g, g € Z.

Figure 3 below illustrates the three parameters ¢, h, g.

location
N

T W

Tr—mp+g

™My, (logay® — ¢

Fe=1t, — (loga)® te — h tm time
Figure 3: Illustration of the parameters ¢, h, g. Solid curves indicate the trajectories of the BRW.

More precisely, we will apply a first moment method conditionally on ¢, and apply a union bound on h,g. In
this way, all particles v € Vz have been classified by the indices (¢, h,g). Following the above discussion, we first
consider the following three cases:

(a) If £ is small,® the number of such particles v will be small. This will be shown in Proposition 10.

(b) If h is small, the size of the cluster corresponding to the particle v is small in the set 7. This corresponds to
the case (9) and will be proved in Lemma 13.

c g is small, the number of descendants of v reaching x at time ¢, is small (note that we condition on two
Ifgi 11, th ber of d dants of hi t time ¢, i 11 te that diti t
particles separated at time ¢, — h that reach x at time ¢,, so such a number must be positive), meaning that

8Here and below, the smallness of £, g refers to having a (very) negative value, instead of having a small absolute value.



the cardinality of the cluster corresponding to v is small. This corresponds to the case (8) and will be proved
in Lemma 29.

It remains to consider case (d): ¢, h, g are all large. There are two sub-cases.

(d1) If £, g are large and h = (log z)?, this means that in the small time period [t,,t, — h], the trajectory travels a
distance of £ + g + M1og »)2 — My Which is significantly larger than 116 212, and thus happens with a tiny
probability. This is the goal of Lemma 19.

(d2) If ¢, g are large and h is close to neither 0 nor (logx)?, we are in a situation where the BRW initiated by
v satisfies that two descendants of v landing beyond mjog z)2 + £ in time (log r)? have a common ancestor
that is neither too early nor too late. This must happen rarely, since it contradicts the philosophy (7). The
analysis is hidden in the computation of sums over h in the proofs of Lemmas 18 and 21.

Therefore, in all cases, the size of the cluster corresponding to the particle v can be controlled with high probability.
One extra technicality comes into play since the statement (7) requires removing ballot-type events where the
random walks cross a certain barrier. When applying (7) in case (d2), one needs to remove the barrier events for
each v € V; within our consideration. Clearly, removing the events for all v € V5 is extremely costly because there
are exponentially many such particles. To overcome this issue, we remove barrier events only for those relevant
v € V. These are the particles v where the last (d — 1)-dimensional location of the latest common ancestor at
time t, — h is close enough to the origin (say within a distance of =< h, so that it has a sufficient chance to reach
B,), in addition to satisfying the prescribed events. This finishes the upper bound for (6) and consequently the
desired lower bound of 7.

Finally, we remark that in addition to nailing down the precise asymptotic of the FPT, our approach naturally
leads to high probability properties of the trajectory that first realizes the FPT. We may identify the main con-
tribution to the total size of the clusters emanating from distinct values of (¢, h, g)—it will become apparent from
our proof that the main contribution stems from ¢ =< logxz, h = O(1), and g = O(1). In other words, one can show
that with high probability, the trajectory that realizes the FPT satisfies:

e its location at time ¢, belongs to My, —(log )2 — (log x) /€, My, (105 2)2 — € log x| for some small £ > 0;

e the collection of descendants of its ancestor at time t~z that reach H, at time t, has a latest common ancestor
of age O(1);

e if h denotes the age of that latest common ancestor, then its location at time ¢, — h is around  —mj, + O(1).

Notation. We typically use (possibly with subscripts) w, v, w to denote particles; P, V,W to denote collections
of particles; E,G,H, o, %,¢,..., % to denote events; t,7,h to denote time; x,g,/,x,u to denote locations or
distances in Euclidean spaces; 1,1, 1, ¢ to denote barrier functions. Vectors are typically denoted by bold symbols.
The notation § > 0 (resp. L,C > 0) typically refers to a small (resp. large) constant depending on the law of the
BRW that may vary from line to line; Ki, Ko, ..., K12 denote large constants that may depend on each other (in
a permissible order) and the law of the BRW (including the underlying dimension d). Denote by 14 the indicator
of an event A. The first time a definition appears is always followed by the ":=" sign. We refer to Appendix A for
a glossary of frequently used notation and definitions throughout this paper.

Outline of the paper. Section 2 collects a few useful results on one-dimensional BRW and applies them to study
the transition in the production number P,, concluded by Section 2.3 that proves the desired upper bound of the
FPT in Theorem 1. The proof of the corresponding lower bound takes up the entire Section 3, where we gradually
carry out the multi-step conditioning plan outlined above. Section 4 contains a sketch of the extra arguments
required for the proof of Theorem 2. Appendices B—D are devoted to several preliminary tools involving the escape
probability of BRW, ballot theorems, and a conditional local CLT.

2 Preliminary results and proof of the upper bound of FPT

2.1 Useful results for the extremal behavior of one-dimensional BRW

This section contains a few useful lemmas that are established results for one-dimensional BRW. A few other
results that need further verification will be collected in Appendix C. We assume throughout this section that the
BRW satisfies assumptions (A1)—(A4) with d = 1, except for Lemma 7.



For 8 > 0 and n € N, we define the barrier event

Gosi= U U o> 7 54 & ogmingin -1 ) (10)

n C2
veV, 0<k<n

where (-)+ denotes the positive part of an extended real number and by definition (log0); = (—o0)4+ = 0. Let us
also define

o a(i) := ¢Sl (D), (11)
Lemma 3 (Lemma 2.4 of [9]). There exists 6 > 0 such that

P(%n,p) < Be”*Fpn5(B). (12)
Moreover, if T, 3 denotes the smallest k such that the event 4, g occurs, we have

P(7n,5 = j) < min{j,n +1 - j} 7> Be™ ", 5(B).

Proof. The first claim is precisely Lemma 2.4 of [9]. The second claim is a restatement of equation (23) therein,
where the power is —3 instead of —2 because we changed the coefficient of the logarithm term in the definition (12)
of ¥, 5. O

Lemma 4 (Corollary 2.5 and Lemma 2.7 of [9]). There exist §,C > 0 such that for z > 0,
P(M,, > my, + z) < C(z + 1)e” o, 5(2). (13)
Moreover, for z < \/n,
P(M,, > my +2) > %ze‘”z. (14)
In other words, (13) is tight up to constants for z < \/n.
Remark 3. The proof of (14) proceeds by first applying the simple inequality
P(M, >m,+2) 2P(Fv eV, : nnn) € lz,2z+1)).

As a consequence, by slightly modifying the proof in [9], it holds that for 1 < z < /n,

1 1
P(Hv € Vo, |nun(n) — (my, + z)‘ < f) > —ze 2%, (15)

4 C

Remark 4. The estimates (12) and (13) were stated in [9] in the form
P(M,, > My + 2) < Clz + 1)e~2#edlilmin(mg=.1),

On the other hand, the authors of [9] remarked below the statement of Lemma 2.4 therein that (13) holds with
a slightly modified argument. We sketch the missing argument below for completeness. The only missing piece
therein is the validity of equation (20), uniformly in i < 8 — C'\/n instead of i < 3 — Cy/nlogn. After a proper

i 2
change of measure using Lemma 2.2 therein, it suffices to show that for some § > 0, P(Sy < i) < e— i uniformly
ini € [8—Cynlogn,8—Cy/n] and 1 < k < n, where S = Zf:l &; is partial sum of an i.i.d. sequence with

law given by the jump of the BRW. Using the Skorohod embedding theorem, we may write Sy, law B, where B is
Brownian motion and 74 is a sum of k i.i.d. nonnegative random variables with a finite second moment. It then
follows that uniformly for 1 < k < n,

|i]245 5142

P(S), < i) = P(B,, <i) < P(Tk > 3) +IP’( sup By > |¢|) <n e m < e,
46 0<s<n/ (45)

where we have used Remark 8.3 of [25] in the second inequality and the < may depend on S, 6.



Define the collection of particles

km,,

Qnp = {v €V, forany 0 <k <n, nyn(k) < +08+ E(logmin{k,n - k})+} .

C2
Lemma 5 (Proposition 9 of [8]). Uniformly in z € [2,/n],

E[#{v € Qng : Mun(n) =m, —z}] < Bz + B)e™".

Lemma 6 (Proposition 8 of [8]). There exists L > 0 depending only on the law of the BRW such that the following
holds conditioned upon survival. Given any e > 0, there exists C > 0 independent from n and x such that uniformly
for m large enough and for x € [2,1/n],

P(#{v eV, i munn) =m, —a} > Cze®* | S5) <e (16)
and
1 1
P (#{v eV inun(n) =my, —ax} > axecﬂ \ S) > 7 (17)
The above results are closely related. For instance, Lemmas 3 and 5 together yield (16) as (x4 8)e®" =g ze®”.

The proofs of Lemmas 5 and 6 are based on a "ballot theorem under a change of measure" argument, which is
standard for the study of extrema of spatial branching processes and will be frequently used in this work. We refer
to [8, 9] for further details.

The lower bound 1/L (instead of the anticipated stronger lower bound 1 — ) of the probability in (17) is
an artifact of the second moment method. This bound solely does not suffice for proving high-probability upper
bounds of 7. To resolve this issue, the work [8] established a concentration bound for 7, around its median. Let
Med(+) denote the median of a random variable.

Lemma 7 (Theorem 2 of [8]). Let 7, be the first passage time to B, for a d-dimensional BRW satisfying conditions
(A1), (A2), and (A6). There exist constants C,c > 0 independent of x such that for each y € [0, z],

P (|7 — Med(r, | S)| >y | S) < Ce™V.

2.2 Transition in the production number P,

In this subsection, we formulate the quote (7) in the form we need using the notion of production numbers,
keeping in mind that we look at a neighborhood of length log z near extrema. Recall (5) and that the production
number P,, is defined as

P,=#{veV,: IweV,, w>v, N, (tz) =z}, 0<n <y,

where w > v means that particle w is a descendant of v. For our purpose, it is also useful to bound from below a
similar quantity P/, as P, defined as

1 1
§,x—|— 5]}, 0<n<t,.
Here and later, the upper and lower limits of a sum are always interpreted as integers, without loss of generality.

The main result in this subsection is the following extension of Lemma 6.

P = #{v eV, FweV,, w=v, nyy, (ts) € [x —

Proposition 8 (Transition in P,). (i) For any € > 0, there is C > 0 such that
P(P;, > Ca D2 8) <.

(ii) There are L,C > 0 such that
1

1

P(Plogay > S| s) > Z.
Remark 5. A well-known fact of supercritical branching processes is that conditioned on extinction, the lifespan has
an exponential tail. In particular, P(#V,, > 0] S°) = o(1) (see Theorem 13.3 of [5]). It follows that the statement
of Proposition 8 is essentially equivalent to the same statement without conditioning upon survival. The general
idea behind proving Proposition 8 is to first condition on the configuration at the time of interest (say, (logz)?),
classify the particles at such a time according to their locations (while discretizing the space), and finally evolve
these particles independently until time ¢,.

10



Proof. In the following, we use frequently the fact that

1 3
my =z + logz — c1(logz)® +o(1) = = — (m(logm)z - logx + . loglog a:) + 0(1), (18)
' 2

C2 C2

which follows from a direct computation.

(i) We first exclude a barrier event of arbitrarily small probability. Let ¢ > 0. By Lemma 3, P(Q, g # V,,) < /2
for some f3 large enough. Therefore, we may without loss of generality assume that the event {Q, 3 = V,} holds.
Define a collection of independent {0, 1}-valued random variables {5v’y}v€sz ,ye[0,]nN, independent from everything
else, and such that

P((S’Uyy = 1) = IP>(]\4(logav)r‘-’ =T — y)

These random variables indicate whether a particle located within the interval [y,y + 1] at time t, will have a

descendant beyond z at time ¢, (note that the evolution of the particles in time [t,,t,], given the configuration at
time t,, are independent). For u € [2,1/n] and v € V,,, define the event

Hyn(u) = {nunn) € [my, —u,m, —u+1)}.

Now on the event {Q, 3 =V, },
mg, +8

P?z =st Z Z 6v,y]le,;x(mngy)7

y=—o00 vEng
where <g; denotes stochastic dominance. We then compute

mg. +B

E[H{Qn,ﬁ_vn} Z Z 6U7y]]'HUjE (m?,m _U):|

Yy=—00 vEV;z
B mg, +p
= pt“' Z IEJ)(-Z\4(10gac)2 >x— y) }P(Hv,tNI (mfz - y) N {Q”ﬁ - Vn})

y=—00

Using the change of variable j = m; — y and (18), the above is equal to

= d—1 .3
Z ]P’(M(logx)z > Mlogz)? + (— 5 logz + j + . log log ac))
i=8 2 2 (19)

x pP(H, 7 () N {Qn.s = Vi }).

Let C > 0 be a large constant. We divide the sum over j in (19) into various ranges:

e <5< ‘12;621 log z — % loglog x. By a union bound and a large deviation estimate, the total contribution is
controlled by

‘éfl log z— 3 loglog ‘;fl log z— 3 loglog
o o3 B o os , .
> pP(H, 7, (7)) < > (logz)’e™ < a7 .
j=—8 j=—8
‘12;21 log x — % loglogz < j < Clogx. By Lemmas 4 and 5, this part contributes at most

Clogz

d—1 3 L L |
Z ( - logx + j + — loglog x)e c2(— ) log z+j+ 2 log logqj)jec2j
202 Co
j:%;; logz—% log log
Clogm
2 d—1 3
<% (log)~" > i( - 2¢, k%x4if+2;bgng)

%:21 log x—% loglog =

Jj=

d—1
Lx? .

11



e Clogz < j < +/x. Again applying Lemmas 4 and 5 leads to an upper bound of
852
log T Z je T oga)? jec2d
j=Clogx
The sum can be bounded using an integral approximation:

> (log )2 . o -
> §Pogay.s(i)i <</ y2e <1°“>2dy+/ yle Wy < (logw)?’/ Z’e %% dz < (logz)*.
j=Clog x Clogx (log x)? C

Therefore, this part of the contribution gives < il

> y/x. We directly apply the upper bound part of Cramér’s theorem along with the first moment method.
Using convexity of I, we obtain

oo

d-1 3 |
Z P(M(logw)z > Mlogz)2 +J — logz + —loglog x) P P(H, 7)) N {Qns =Vo})
=7 2
> ™ (log 92 HI~ Gog logat D loglogz  _my —j
< Z ptwe*(logz)n( 5 (1OgT)2 )e_tavl( t{m )
=vE
> m g w2+j*d;110gm+%loglogz
< Z x%p(logzﬂe—(logzPI( (log x) Zozgz)Q 2 )6023'.
Jj=Vzr

If = is large enough, then for some 4, 4" > 0,

Moga)? +J — 3 logz + 7 loglog S e 45 4 (2t o)
(log )2 - I'(cy + &) (log )2’

where we have used the fact that ¢¢ is well-defined in a neighborhood of ¢;. This means

0o s ) . . m(logm)2+j7(é;21 logz+%loglogz ‘ s ) , o
E pr(log z) 67( ogx)I( (log 2)2 )662] < xTe(log z)*(I(c1)—I(c1+6")) 2 676]
i=Vz

d—1
Lx 2.

Combining the above four cases with (19), we conclude that

mg, +8

d—1
B[t 3 3 dustin o, ] <5

y=0 wveVg,

The rest follows from Markov’s inequality and Remark 5
(ii) Similarly as in (i), we define a collection of independent {0,1}-valued random variables
{6:17y}1)€v(10gm)2,yE[O,ZL’]ﬁNv independent from everything else, and such that

~ 1 1
/ '~ ~ — —_— p— —
B(6,, = 1) =P(Jve Vi, npE) elo—y—J2—y+7]).

These random variables describe whether a particle located inside [y — 1,y + 1] at time (logz)? will end up with
a descendant in [z — 3,z + 1] at time ¢,. Define

k
U, = {veVn for any 0 < k < n, nyn(k) < 1:"}
For u € [2,/n] and v € V,,, define the event

1 1
- mn—u—I—f)}.

H, ::{ Un7 v,n n — U= 7
{al) = {0 € U ) €y —u— & :

12



i,y + i] for M(logz)2 — logit <y < Mlogx)2, Y € Z at time

It follows that, by considering particles located in [y —
(log z)?,
(20)

log T

M(logx)2 2c2
!
Z Z 5”»y]1HL,(1ogw>2(m<logm>2*y)'
1

/
P(log z)2 Zst

Y=M(10g )2~ ¢

We apply the second moment method to give a lower bound of the right-hand side of (20). Let us emphasize that
are independent. We have

the events H,, ,(u) and the random variables d;, ,

M (1og 2)2 ~ logT

!
]E|: Z Z 5v’y]]-H1/J-,(log1)2(m(logz)2_y):|
(21)

Y= (10g )2 = St log © VEV10g )2

M (1og 2)2 — logx

~ 1
Z (H’U € Vtt;’ nv,fz (tm) € [SL‘ — Y- Z’ r—=y + Z]) P(Hll),(logw)Q (m(IOgl’)z - y))

_ p(logx)z

d 1 logz

) > ue®2*. With a change

Y=Mog )2~

It follows from the same argument leading to (17) in [8] that for u € [2,/n], p"P(H], ,, (u)
(logz)2 — ¥ and applying (15) of Lemma 4 and (18), the quantity in (21) is equal to

of variable j =m

o 3 d—1 1
o ~ . 2 e L\ (logx)? !
2: P(’Mtz (mg, + (7 + - logloga — =~ logx))‘<4)p B P(H), (10g )2 (1))
@logm
“ 3 -1 —c2(j+ = loglog z— ogzx j
> Z ((j+—loglogx— log z)e 200+ loglog == 55+ log ))(jecﬂ)
C2
Jj= 262 Lioga
d—1 logz
-1 2 d—1
> (logsc)_?’acdT Z (j— log z)j
j:‘écllogz
d—1
>x 2.

We next compute the second moment of the right-hand side of (20). Expanding the square leads to

M (log )2~ 202 L logz

2
!
E |:< Z Z Y 73/]]'Hv (10g£)2(m(10gz)2—y)) :|

Y= (10 2)2 — dc_21 log UEV(log )2

log x

(log z)? M(log )2 — logL M(log )2~
2
_ E : p(logw) +s E E E[5;, yéiu y]
s=1 Y=" 1o 22 7% logz y/'=m 1, ;)2 *% log @
X ]P)(H ,(log )2 (Tn(logr)2 - ) N H ,(log )2 (m(log x)2 — Y ))

where v, w have genealogical distance equal to 2s. Meanwhile, applying the same argument leading to (19) in [§]

gives that
)OH ,(log )2 ( M(logz)2 — yl))

< (m(log x)2 — y)(m(log )2 — Y ) e2((M10g 2)2 =Y)F(M (104 w)z_y/)).

P(H/ ,(log z)? ( (1‘5)%93)2 -

Combining the above steps and applying (13) of Lemma 4 with the change of variables j = miog 1)

13



M(log z)2> — ¥, We have

d—1
M (log )2~ 2¢q log =

2
E[( Z Z 5/ Hv <1UgL)2(m(1ogz)2 y)) ]

-1

Y= (10g 2)2 — dr2 log x vev(log z)2

d71 log x d71 log x 3 d—1
< Z Z P(My, > mz + (j+ - loglogz — = —log 7))
d L loga:
s 3 d—1 ' ea(G4i)
xP(Mz >my + (3" + —loglogx — log x))jj'ec2\ti
e z Co 2¢co
d71 log x ‘Fl log z d d
R 3 -1 .
< (logz) Szdt Z Z (j+ o loglog x — logx)(j —|— loglog:z: " e log z)55’
j—(é L logm]’*d_l log x
< 471

We conclude with the Paley—Zygmund inequality that there exist C, L > 0 such that
1 4 1
P<P(Ilogx)2 > 6x(d 1)/2) > -

The proof is then complete in view of Remark 5. [

2.3 Proof of the upper bound of FPT

The idea is rather simple: given Proposition 8, we obtain T /C many independent trajectories in the time
period [(logz)?,t,] that lead to [z — 1,2 + 3] at time ¢,. It remains to argue that each of them has roughly a

chance of 2~ “Z" to reach Bo(%) in the last d — 1 coordinates. To justify this claim, we need a conditional local
central limit theorem, as we have already conditioned on the displacement in the first dimension of the trajectories.
The proof will be deferred to Appendix D. Let {&;};cn be an i.i.d. sequence of random vectors with the same law
as &€ and consider its partial sum S,, = >"" | &;.

Lemma 9 (conditional local CLT). Fiz a large constant L > 0. Uniformly for X(x) = O((logx)%),
1 1 1 1 _d=1
P(A2)+Sg €lo— .o +2]x30( VI A@) + 8 € o - Foa+5]) <o T,

where Bo(3) is the ball of radius 1/2 centered at 0 € R~

Proof of the upper bound of Theorem 1. On the event {P('logz)2 > %x(dfl)/z} N S, we may label particles
{vj}1<jcata-v/2)c at time (logz)? that allow for descendants {w;}i¢jcp@-v/2/c in [z — 5,2 + 3] at time t,.
By a union bound and a rough large deviation estimate (recalling that 7, (k) € R¢71 is the last d — 1 coordinates

of nv,n(k))7

PEj € {1,...,2 @2 /CY, ||, ogar2 ((log 2)?)|| = (log2)?) < plos®)’ =08 0)” — (1)

for some ¢’ > 0, and hence we may without loss of generality assume that
7wy . (log )?) || = [|720;,10g )2 (log 2)?) || < (log z)®

for all j. Let P be the conditional law upon the above setting (i.c., on the event {Pliogr)z = ix(d_l)/g} NS, the
configuration up to time (logz)?, and the event that ny, ., (tz) € [z — 3,2 + 1] and ||7u, ¢, ((logz)?)|| < (logz)?
for all j). By Lemma 9, uniformly in j,

d—1

By 2 (12) = Ty 1. (108:0)?) € Bol5) = T, (l0g:2))) > 25", (22

To prove the upper bound of 7,, we show that one of the descendants of these particles {v;} realizes the FPT
with an asymptotically positive probability. It suffices then to consider the sub-event that for some j, 9, ¢, (tz) €

14



[x— %, 2z+ 1] x Bo(3). Note that under the law P, the random variables { T, . (t) =N, 1, ((l0g 2)*) }i < j<pta-11/2 )0
are independent. Therefore, by (22),
P(r, <t, | {P s L o@znag
Te S o { (logz)2 = Cm }
L R 1.
> B(3), Ay . (t2) = A o, ((1082)2) € Bo(5) = .t ((log 2)?)
. R 1.
—te TT (1 B(an0) ~ (G5 0) € Bo(3) = . (05012

1<j<a(d-/2/C

L1
>1- [T a-a%)> &

1<j<ad-n/2/C
By Proposition 8,

1
P(r, < t, —
(1o < t \S)>>LC

Using Lemma 7, we conclude that for any € > 0, there exists K > 0 such that
P(r, >t, + K | S) <e.

This completes the proof. O

3 Proof of the lower bound of FPT

Recall (5) and t, = t, — (logz)?. Let us define also ¥ := x — M(logz)2- This section aims to prove that
Ty 2 t, — Op(1). That is, for a fixed € > 0, we find a lag time K > 0 such that for = large enough,

P(r, <ty — K) <e. (23)

In all asymptotic upper bounds below, the asymptotic constant does not depend on K. We use the short-hand
notation t, x :=t; — K. We omit the conditioning on the survival event S for notational brevity in all probabilities
and expectations below.

3.1 Reducing the proof to the analysis of particles with a fixed ancestor at time ¢,
3.1.1 The key conditioning step

To prove the lower bound of 7., we follow the strategy outlined in Section 1.2: classify the particles near frontier
at time ¢, according to the locations in the first dimension, and then analyze the chances that their descendants
reach B, at time t, x = t, — K (local hitting probabilities). Consequently, the total hitting probability of B, can
be bounded from above using a first moment method, by weighting the local hitting probabilities by the density of
the particles at a location near the frontier. The following proposition computes the desired weights. Let K5 be a
large constant such that P(4; ) <¢e/2, by Lemma 3.

Proposition 10 (density of particles at time t,). It holds that for ¢ < x/logz,
E[#{ve Vi, in,p () €F— 01,5 - 0OHg: | < e (loga+0,)2"F (log) ™
For ? > x/logx, there exists L > 0 such that
E[#{v €V i,z (ty) €T —0—1,% — 5)}]1545%1(2] < e (logx + €+)x%(log x)Selktlog)/z

Here, we allow the constant in < to depend on K.

Proof. We apply the "ballot theorem under a change of measure" argument similarly as done in the proof of (16)
(see Proposition 8 of [8]). Before performing the change of measure, we introduce A\ = I'(mz, /t), which is the
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value of A\ where the supremum of (1) is attained with z = m;_ Jtw. By (15) of [9], it holds 0 < ¢ — A < (logz) /.
Let Q be defined by
@
dQ
It follows that under Q, {n, 7 (k) — kmgz, /’tvgﬁ}kzo)m?;m is a mean zero random walk. The ending location of the
random walk is around  — £, which is at a distance
d—1

_ 3
mi, + e = (@ =0 = 5~ logz — loglogw + Ky + ¢ (25)

— oA, 5, (Be)—mg, )~ T I (my, [T) (%Vw)3/2p_t~m67}:(77u,fz (tz)—mz,) (24)

below the barrier.
We therefore have, using Lemma 2.3 of [9], (24), and (25),

E#{veV; in,z (t) € [T —€—-1,7 - )} g

< PP,z (L) €F—L-1,F—0)NGE )

< ()2 A mQn, ; () €F— - LF—O)NDE )

te, Ko
d—1
<<K2(1+( 2

3 ~
logz — — loglogx + Ko + 6) )6—02(1—2—"1{1)612@(10%)%
Co Co +

< e (logz + £+)x% (log z) ~3eltos2)/e
The last term eX4(°82)/* « 1 if ¢ < 2/logx. This proves the claim. O

It remains to fix a particle v € V. such that 5,7 (t;) = [z — ¢ — 1,7 — ) and %?CNKQ hold (recall (12)), and
bound the probability of finding a descendant w € Vi, . of v with m,, . (tz,x) € B;u which is the task of the
next theorem. In the following, we use Q° = Q%" to denote the probability measure on the BRW restricted to the
descendants of v (i.e., the sub-tree with root v and we implicitly recognize v as the common ancestor), conditioning

onn,y (tz) € [#—€—1,7—() and &¢ K2.9 Let K3, Kg, K3 be large constants to be determined later in the proof.
Recall (11). For future use, we consider a large constant L to be determined and define the auxiliary function

l if 0 < gz,
2
V(log2)2,6(£) = (log z)Y/3 + Eef(loifm)z if 10% < ¢ < Llogxloglog x; (26)
P(log )2, (£) if £ > Llogxloglogx.

Next, we define the key quantity I, , according to the range of £ as follows: if £ < —K3loglogz,

d—1
2(d-1) ,— %5t

Iy, = (log x)
If —Ksloglogz < ¢ < Kgloglogx,
T = O, Kl o) (g )= e~
If £ > Kgloglogz,
Ipy = 6x*%e*c2%¢(mg 2y2,5(£) + wi%56%26@(1%x)z,a(ﬁ)(Kd’l’KS n €7K8/2(log x)Qd)

+ C(e, K)e~(2+3/M (1og x)de_%
_ £loglog o oglog x
+ 0(8)6761021{/4137%67022\11(1(%$)2)5(€) (eQKlO tez2)? 4 (log logx)”“rgfl/gel Rpes ).

Here, C(g), C(e, K) are constants to be determined, which may depend also on the constants K3, K¢, Kg but not
on x, /.

Theorem 11 (first passage contributions of particles located in [T — ¢ — 1,7 — £) x R%! at time £,). Let ¢ > 0.
Then there exist C(e),C(e, K) > 0 such that for all ¢ € Z and = large enough,

QZ(Hw € Vipsor W= 0, Nut, (e i) € By) < Iy
Here, the implicit constant in < may depend on K3, K¢, Kg but does not depend on € or K.

The proof of Theorem 11 is deferred till later and takes up the majority of the rest of this paper. In the next
subsection, we finish the proof of the lower bound of the first passage time 7, assuming Theorem 11 holds.

9Note that the location My 7, (tz) is not independent from the event 5%9 [
) z, Ko
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3.1.2 Proof of the lower bound of FPT

Before proceeding to the proof, we need Lemma 22 below, which asserts that there exists K; > 0 such that
P(||7u.n(n)]| =1 for all v € V,,) < Kye” VK1,

In other words, it is unlikely that all particles at generation n appear outside the unit ball for n large. In this way,
we reduce the proof to finding an upper bound on P(3w € Vi, ., N t, « (te, i) € Be)-

Proof of the lower bound of Theorem 1. With Lemma 22, it suffices to bound from above the probability of finding
a particle in B, at time ¢, x (because on the complement of such an event, Lemma 22 shows that the probability
that the FPT is smaller decays at least quasi-exponentially; see e.g. the proof of Theorem 1 of [46]). The first step
is to impose the global barrier constraint %i K (see (10) for its definition). We have

P(3w € Vi, 1os Mty i (ta,x) € By) < P(gﬂ“Kz) +P(Ew e Vi, i, Nty i (to, k) € B, g{;}Q)- (27)

In the following, we use w > v to denote that the particle w is a descendant of v. Using the first moment method,
we have
P(Hw € V;fw,Kv Nw,te k (tLK) € By, g{ijg)

=P(3v e Vi, we Vg, ,w v, Nw,t, i (te, ) € Ba, i,KQ)

<E |:154;w)K2 § 1{3 WEV, 1o W, N t, g (te,x)EBa}
veVy

= Z E |:E |:]lgt51,K2 Z ]l{nv,fm (te)€lE—L—1,3—0)} 1{3 wevtw,K WSV N, by, g¢ (te,x)€Ba}
LEZ veVy,

19 ey Oz ) € - 0= 15- 0}

— ZE[#{’U €Vr inp () €@—C—1,7 - E)}]lg{lkz(@l(zlw EViwior W= 0, Nty (taic) € Bm)].
LeZ

Note that the inner probability is bounded by the deterministic term I, ; by Theorem 11. Applying also Proposition
10, we get

PEw € Vi, o Mt s (to.ic) € Buy 92 ) < ZE[#{U €Vi inyr (L) eF—0—1,F— z)}nggmwkjfm
LET

< Z(ecze(logﬂﬁ +00)2" 7 (loga) Bektlos)/ayy,
tez

Inserting the definition of I, , yields the following upper bound on the above quantity:
> (e(logx+ )27 (loga) ™) ((loga)* T Na™ )
¢<—Kj3loglogx

+ ) (¢ (log + €1)2"7 (log ) ~*)(C(e, K) (loglog 2)T (log )™ "= ¢~*')

— K3 loglog a</< K¢ loglogx

+ Z (e“*(log z +€)x%(10g z) " Seltlog)/zy
{>Kgloglogx

d—1

X (5x*Te*C2Z&p(10g 2)2,6(€) + xf%fefcﬂgo(]og 2)2,5(£) (KA—1Ks = 5s/2(log z)?%)
+ C(e, K)e™(29/4 (og x)3dzfdz;l

_ Lloglog z e £ 1o log
+ C(E)e‘“lc?K/‘lx_%6_626\11(1()“)2’5(@) (ezK“’(legT + (loglog x)d+3£_1/86%)

=11 + 1+ Is.

Our goal is to show that I; + I + I3 can be made arbitrarily small as ¢ — 0, K — oo, and £ — oo (in order).
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We next estimate the sums I, I, I3. With K3 > 0 picked large enough, the term I; can be controlled using
L < Z e’ (log )2 1=2) = o(1).
{<—Ksloglogx
For I, we have

I < C(e, K)(loglog 2) ™ (log ) 7 = o(1),

where by convention, the o(1) term converges to 0 as © — oo, with rate possibly depending on ¢, K.
For I3, we further decompose into two parts. First,

> (e (loga + 0)2"F (loga) el 1)/
¢>Kgloglogx
X (ax_%e_”e&p(bg 22,5 (0) + m_%ge_cﬂgo(log 2)2,5(f) (Kd_l_K8 + E_KS/Q(log :C)Qd))

= (logz)™3 Z é(logm—1—6)90(10“)2,5(6)(5+Kd_1_K8 —|—E_Ks/z(logx)zd)eu(log“’)/gﬂ.
£>Kg loglog x
With Kg picked large enough, the above is < 4 0(1). Second, we have (the case ¢ > z/log x being almost identical
as above, we remove the term elf(0g®)/z for brevity)
Z (e“**(log = + 6)xd2;1 (logz)~3) x (C(s, K)e~(e2Hd/D (1og g)3d .~ o
£>Kg log log ©

 Cfe)em oM T o2 o o () (7RI 4 (loglogar) IS R

< CeK)loga)™? Y e ogz +0)
{>Kg loglog x
log x

Lloglogx o, oglogx
+ C(e)(log z) ~Becreak/4 Z (logz + ¢) (e2K“’ Tz 4 (loglog glj)f“r«?g—l/fieil T ) (log 2)2,6 (£)

{>Kg loglog x
< C(e, K)(log z)3d—2Ked/5

2K10 £Lloglogx

+ C(E)(logx)—3e—(:1c2K/4< Z (logq; +£)\I/(loga:)2,5(£)€ (log z)2

{>Kg loglog x

+ (loglog x)dJrS Z gil/g(logﬂf + )P (10g x)2,5(€)ebg“§§m“> .
£>Kgloglogx

If K¢ is large enough, the first term can be controlled by o(1). On the other hand, for the quantity inside the last

£ lo.

£loglog og Llogloga
bracket, we apply (26) and observe that K10 s 0? < 1 for £ < log x loglog z, eEREEE < 1 for 0> log x, and
log £ log log x

e st < (Y16 for £ > Kgloglogx and K¢ picked large enough. Using standard integral approximations and
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changes of variables, we have the following upper bound:

2K, tloglog @
Y (loga+ )W (ogayz s(L)e 10 o
£>Kg loglog x

log ¢loglog x

+ (loglogz)™* Y~ 073 (logw + ) ¥ 1og.0y2,5(H)e
£>Kg loglog x

(logz)/L Llog xloglogx a2
< / (log 2 + y)ydy + / ((logsc +y)(logz)'/? + y(log z + y)e Tos? ) dy

K¢ loglog x (logz)/L
oo
2K y loglog x
+/ Plogaz,s(y)e” " Ten® dy
Llogzloglogz
i (logz)/L 7/8 log y log log = & -1/8
+ (loglog z) (/ (logz +y)y""e v dy+/ Y~ P hog )25 (y) dy
Kg loglog x Llogzloglogx

Llogzloglogx 5y2
- / ((log + y) tog ) /2y ~/% 4 y7/S(log & + y)e ™ Tox =7 ) dy)
(logz)/L

< (logz)® + (log 2)8/3 + (loglog )%+ (log ) *7/16
< (logz)®.

Combining the estimates above, we arrive at
I3 < o(1) 4+ & + C(e)ecre2k/4,
Altogether, we have
PEw € Vi, s, Moty i (taic) € Bay @ 0 ) < L1+ o+ I3 < 0(1) + &+ Cle)e™ K/, (28)

Recall that the o(1) term may depend on €, K but the implicit constant in < does not depend on ¢, K, z. Therefore,
(28) can be made arbitrarily small by picking in order £ small enough, K large enough, and then z — oo. On the
other hand, ]P’(%;w’ x,) can be bounded using Lemma 3. Combining with (27) shows the desired lower bound (23)
of 7. O

3.2 Proof of Theorem 11

The goal of this section is to prove Theorem 11. In the titles of the subsections below, the cases I, I, and III
respectively refer to the three cases: ¢ < —Kj3loglogx, —Ksloglogz < ¢ < Kgloglogz, and £ > Kgloglogx.

3.2.1 Setting up stages

Recall that the law Qf = Q%" denotes the probability on the BRW restricted to the descendants of v, conditioning
onn,z (tz) =[@T—0—1,— () and &° x,- Our goal is to give an upper bound for the local hitting probability

@é(aw € Vtz,xaw -0, nw,tm,x(tw,K) € Bm) (29)

for different ranges of ¢, as a function of ¢, x.

If we ignore the d — 1 dimensions, this is exactly the probability that BRW reaches a distance mjog 4)2 + £ in
time (logx)?. When we add the extra dimensions, we need to condition on the extra event of the displacements
along the first coordinate of v for the previous t, steps. We first introduce the necessary settings required for the
proof of Theorem 11.

For a particle v € V7 , we define the heterogeneity index h, of v as the largest number of uncommon generations
for two descendants of v that reach H, at time ¢, x. In other words,

hy =max{h > K : Jv1 € Vs, _p,v2,03 € Vi, o, 02,03 = V1 = 0, Ny, 1,  (tex) = 2,0 = 2,3}

It follows that h, > K and there exists a unique latest common ancestor (lca) at level t, — h,, of those who reach
H, at time ¢, x. We denote that latest common ancestor by vic,. We also define the heterogeneity location g, of v
such that ny,., t,—h, (tz — hy) = T+ gy — My, — Kk, and the multi-dimensional heterogeneity location u,,,, € R 1 of v
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such that .. +.—n, (tz —hy) = (T + g — M, — K, Wy, ). Let u, € R denote the multi-dimensional location of v,
le,m,z, (tz) = (¥ — £,u,). The quantities hy, g, u, can all be viewed as random variables under Q. For a vector
u= (ug,...,us_1) € R we let R, be the (d — 1)-dimensional rectangle [uj,u; + 1) X -+ X [ug_1,uq_1 + 1).
For h = K,...,(logz)?, g € Z, and u € Z971, we define the events %), = {h, = h}, €, = {g» € [9,9 + 1)}, and
Du = {wy,, € Ru}, #, ={u,,, —u, € Ry}. See Figure 3 for an illustration of these parameters.

Since we will partition the probability space into a union of events of the form %), N €y, it is essential to bound
the probabilities of those events under Qf, which is given by the next result.

Lemma 12 (size of the event %), N6,). It holds that
Q' (@ 1%,) < min {1, (Jg + 0 + e o0 59+ 0) b min{, ((Jg] + D)),

Pmof Let #5 4 denote the event that there exists w € Vi, _p, w > v, such that 0y, —n(tz —h) € [t —mp_x +
— 1,2 — mp_g + g). In particular, the displacement of the BRW initiated by v is at least (by concavity of the
1ogarithm and assuming K is large enough)

aKkK
Mlogz)? — Mh—K + L+ g = Mlogz)2— h+5+g+7

Let .7, 4 denote the event that there exist two descendants in time n running above m,, —¢ with a common ancestor
only at time 0, i.e.,

jn 9" {HU w e Vn, 1C&(’U ’LU) (Z), 771;,71(”) =My — 4, nw,n(n) = My — 9}7 ne Na (30)

where () denotes the unique particle at time zero of the BRW. For the event %), N6, to hold, the event _#}, , must
hold and if v1., denotes the latest common ancestor at time t, — h, the sub-BRW with root v, satisfies the event
Ih—K,q- By independence of the process before and after time ¢, — h, Lemma 4, and Lemma 28, we conclude that

QBN ) < QU Ino) P(In—k.g)
<min {1, (lg + ] + e 20K (g 40y minL, (] + De)?),

where we have also used the fact that a probability is trivially bounded by one. O

3.2.2 A uniform conditional probability bound and local hitting probabilities, I
This section aims to prove the following result that serves as a general conditional bound for (29).

Lemma 13 (uniform conditional probability bound). It holds for |¢| < z'/3, h=K, ... (logz)?, and g > 0 that
Q'Bwe View> W = U, Nut, i (te i) € By | B NCy) K pi-1p=%,
An immediate consequence of Lemma 13 is that
2(d71)l,7%'

Qe(ﬂw € Vipser W0, Nuit, x (te i) € By) < (logx)

In particular, the estimate in Theorem 11 for ¢ < —K3loglog x holds. We need a few preparations to prove Lemma
13.

Lemma 14 (uniform local upper limit theorem). Uniformly in |{| < z'/3 and u € R4~1,
Y _d-1
Q°(uy ERy) K™ = .
Proof. Recall that under the law Q°, we condition on Mo L, (t;) €[ —¢—1,% —¢) and gs Ky In particular, the

latter event means that the trajectory {n, 7 (k)},<;<z, is bounded from above by the curve

km 6 -
P(k) = (logmln{kj to — kP4, 1<k <t,.
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Denote by Ey, ,, the corresponding event that Sy < 1(k) for 1 < k < t,. An equivalent formulation of the statement
is that uniformly in |¢| < 2'/3 and u € R%~1,

1

P(S; €[ —0—1,T—{) xRy | S;, € [T—L—1,T (), By,) < s
The left-hand side probability can be written as

P(S; € [#—¢—1,7—¥{) X Ry, Ey )
P(S; e —L—1,5—1{), Ey )

P(S; €[F—{—1,F— ) x Ry | S;, € [F— £~ 1,5~ (), Ey,) =

We next apply a change of measure argument similarly as in the proof of Proposition 10, whose notation
we follow. Consider the measure Q defined by (24). It follows that under Q, the jump £ is i.i.d. with mean
(mgz, /tz,0) € R%, and consequently, the random walk {S,,} := {S, — (m;ﬁn/fw, 0)} is centered. It follows that

P(S; €[F—C—1,5—0) x Ry, Eyp)  (5,)*2e 2T m)Q(Sy € [F—£— 1,7 — €) X Ru, By.)
P(S; €[z—(—1,2—1), Byo) (fz)3/2e—x(5—f—mzm)@(sg €F—t—1,7—10), By,)

_ Q(g'{m S [5—€— l—mgx,i—ﬁ—ma) X Ry, Ew,m)
QS;, €[@—L-1-mz ,&—L—myz), Eyy)

)

where we note that

~ ~ km; ~
Eyo={Sy <v(k) forall 1 <k <i,} = {Sk < w(k) — =" for all 1 <k < tx}.

x

Using (9) and (10) of Lemma 2.3 of [9], the denominator has the lower bound
QS; €eF—t—1-mz ,T—L—mg), Byy)> @ —€—mg )a %2
Similarly, by Lemma 23,
QS;, €@~ —1-mg ,&—L—mz) x Ry, Byy) < (F — £ —mg )a~ (422,
Note that here we allow the asymptotic constants to depend on Ks. Therefore,

P(S; €[t —€—1,7—{) X Ry, Ey ) a1
P(S; €[z —L—-1,7 1), By )

as desired. O

Lemma 15 (uniform local upper limit theorem for an independent sum). For any x > 0, suppose that {1(x), {2(x)
are two independent random variables in R4~ such that the law of {1 (x) satisfies that for any v € R,

P(¢i(z) € Ry) < 277 .
Then for any u € R¥~1,
d—1
P(¢(2) + Co(x) € Ry) <™ 2 .
Proof. It follows from independence and elementary geometry that

P(Ci(x) + Ga(w) € Ru) = Y P(Ci(2) € Ry)P(Ca(x) € Ru— Ry)

veRd—1

<27 Y P(G(z) € Ru—R,) < T,

veRd—1
This completes the proof. O
Lemma 16 (Markov property). It holds for all £,h, g that under law QF,

law law

U, = Uy |<@h7<gg = Wy ‘ ﬂhvcggvo(uvlca _uv)~
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Proof. By definition of the events, we have the following diagram of dependence:

o, 7. (Iz)) ——— F

7t:c tz;tz,K
~ d—1
o7 (E2) F

Figure 4: Dependence relation of the o-algebras. Arrows indicate that under the probability measure induced by
the BRW, any random variable that is measurable with respect to the object being pointed to (i.e., the head of
the arrow) can be simulated as a function of random variables measurable with respect to the object pointing

from (i.e., the tail of the arrow) along with some independent randomness. Here, }"til)t b

generated by the first coordinate of the tree rooted at v, and FD denotes the o-algebra generated by the last

to,te K

denotes the o-algebra

d — 1 coordinates of the tree rooted at v.

Note that o(n, 7. (t.)) is trivial under Qf, u, is on,z, (t.))-measurable, %), N E, is _7-'t~(117)tw(—measurauble7 and

Uy, — Wy 1S ]-"»tgd_l) -measurable. Therefore, on the law QF, the random variable u, is independent from % N Gy

xle, K

and u,,_, — u,. This finishes the proof. O

Proof of Lemma 13. By the law of total probability,

QK(HU) € ‘/tz,K7w -, nw,tm,K(tﬂC,K) € B, ‘ B, ﬂ(gg)
=Y Q' Bw eV, 0, w > 0, Nty i (te, k) € Be | Bu N6y N D) QYD | B0 E,).

Our first observation is that the conditioned law of the displacements of the tree initiated at u in the other
d — 1 dimensions is equivalent to its law conditioned only on the event that the same tree initiated at vi., has at
least two completely disjoint paths starting from v, that reach a distance of mj,_x — g in time h — K (which
we denoted by %,k 4 in (30)), since the rest of the conditioned events belong to other independent o-algebras.'”
Since g > 0, the event M}(LPK > mp_k — g is common, meaning that P(.#,_g ) > 1, where the implicit constant
may depend on K. By large deviation estimates for the maximum of a BRW (see Theorem 3.2 of [18] or Theorem
1.2 of [31]), we have for some ¢, L > 0 that

Q'Cw eV, x,w = v, Nty i (te,x) € Be | Bn N Cy N D)
=Q'Qwe Vie oW =0, Nty i (tex) € By | Ihok,g N D)
<PMY e Ry | MY > mpy_k —g)
< min{1, e~ clul=Lh)y
Here and later, the conditioned event .#,_g 4 refers to the event that the sub-BRW process with root v, satisfies
the event %,_g 4.

On the other hand, Lemma 16 implies that conditioning on %), N %, the random variables u, and u,,_, —u,
are independent under Q. By Lemmas 14 and 15, and recalling the definition of %, above Lemma 12,

Qé(-@u | N Ey) < x_%. (31)
Combining the above yields
Qe(aw € V;I,K’w = U Nty x (tI,K) € B, ‘ B, m%g) < Z min{l,e_c(““H_Lh)}x—%
' lle]Rd71
< hilp T
as desired. -

10This fact will be frequently used below, such as in the proof of Lemma, 18.

22



3.2.3 Local barrier events, I1

We define a collection of local barrier events and show that they have small total probabilities. Consider for
¢ > —Ksloglogx the collection Wy, 4 of particles w € Vi, _p, w > v such that the event %) N €, holds and
1Mw.t,—n(tz — R)|| < h. Intuitively, these are the possible particles that can serve as the latest common ancestor

Ulea- By Lemma 12 and (31), the number of such particles (under the global barrier event £Z4 Kz) has an expectation

. e . c _q _d=1
Eqr [#Wonglo: ] < min {1 (g € + Ve o0, 012 s(g + 0 mindL, ((Jo] + De9)2 15 (32)
For w € Wy, 4, we constrain the BRW initiated from w, in time k € [tz — h,ts k], by the barrier

- k— (ts — h) 4 ‘
¢g,h(k) =T —mp_K + g + LlOgh + Wmh_}{ + a(log mln{k — (tx — h), t;c,K - k})+, (33)

ty —h <k <tyx.

With L picked large enough, it follows from Lemma 3 that each local ballot probability is < e¢h =3¢, This in
particular means that L may depend on e, and hence in the estimates below involving the barrier (33), the
asymptotic constants may depend on €. We state this dependence implicitly in Lemmas 18 and 21 but omit it in
their proofs for simplicity. Using (32), the total local ballot probability then has an expectation

(log )?
d—1

)
Z Z(Eh_?’d) min {1, (lg+ ¢+ 1)6_02(9+€)<p(10gm)275(g + €)} min{1, ((|g| + 1)e29)2}h¢ 1=
h=K g€z

(log ©)*

e T e 3T ST g+ + 1€ p0g0 (g + 0) min1, (g + 1))}
h=K g€z

<ex T e > (g + £+ e 9005 )25 (g + €) min{L, ((lg] + 1)e9)?}
gEZL
_da=1 _ . —c c
e P (a4 14 D g ata + 0+ Sl + 1+ D sl + 191 + 17
920 g<0
< e T 2] + 1) p(i0g 2.5 (4)-
As a summary, for the barrier event

fe= U U U U U wes® > bl

K<h<(logz)2 g€Z wEVy, 1, w'thw‘K te—h<k<ts K (34)

’u)EWLh,g W —w

it holds that
QU (&E1e) < cx™ T e (|f] + 1) rog 2,5 (6)- (35)

Another local barrier event to be removed from our consideration is, roughly speaking, the random walk
{Nwte  (F) 37, <kt o CTOsses a certain barrier before time ¢, — h. Define for some large constant Ki1 (to be
determined) the barrier function

77[}$7K(k) =+ K11 log IOgI —+ Wm(logw)Q —+ a(log mln{k — t$7t$,K — k})+7 t:L‘ < k' < tx7K (36)

and the local barrier event

&= U (%m( U (U tuea®>viem)n( U {nw,tw,,{m)eBx}))).

K<h<(log x)2 u€Viy—n T <k<ta—h weVi, g
WU

(37)

To bound the size of & ¢, define

T = inf {k € o tox] : Fu € Viyu = 0,100 (k) > Yo (R)}.

23



By Lemma 3 (with S8 therein given by £+ K7; loglog « as the random walk starts from [ — ¢ — 1,7 — £)),
QYT =ty +j) < min{j, (logz)* + 1 — j} (¢ + Ky loglog )e~ 2 (“HRunloslos sl oy, 5(0)
< min{j, (logz)? + 1 — j} 3({ + K1, loglog x)e~** (log ') ~2K11,

We may then compute the total contribution in the case where the barrier is crossed for a fixed ¢. By Lemma 13
and since the barrier event is measurable at time ¢, — h,

(log 2)?
C@)< Y @(@mnm <t-nn( U tetr <))
h=K

weVy

z, K
wu
(log ) s (logz)?—h (38)
< Z R 12 (04 K11 loglog x)e 2! (log ) ~2Kn Z min{j, (logz)% + 1 — j} K¢
h=K j=1
<z T (€ 4+ K1 loglog z)e ¢ (log z)2d—c2Kn
< mf%e*”[,
where in the last step we picked K7; large enough and used that |¢] < loglogz. As a summary,
Q' (o) <z~ T e, (39)
3.2.4 Local hitting probabilities, II
In this section, we prove an upper bound of (29) in the case —K3loglogx < ¢ < Kgloglogx. Define
Ef =& Uy (40)

and

a=n (U (U e ® >0k ®}) 0 (U i tar) € Bi})):

u€Vig—n T, <k<ty—h wWEVE, g
wu

Note that 620 = Ug << ioga)z #hs 50 that (67)¢ € ()¢ for all K < h < (log x)2. Also define ky, := (logx)? — h.

log z

Lemma 17 (size of the event B, N €, N Py N (#,)¢). Suppose that —Ksloglogx < £ < Kgloglogx. It holds that
uniformly for allu € R4~ K < h < (logz)?, and g € Z,

Q' (B 1%, N D) < 2~ *F min {1, (lg + £+ VeI 0005012 5(g + 0 fmin{L, (Jg] + e (41)

Moreover, assume that kyp, > logx, and fir K5 > 0. If 0 < g < K5logh,

— Kig(logkp)g
QUPLNC, N Dy (7)) < a7 e (tho) min{ky, h}~%/*(loglog z)%e BT , (42)
and if g <0,
QYSBL N Cy N DuN (7)) < o T et min{kp, h}~%/*(loglog x)2(|g| + 1)%e29. (43)

Proof. First, we write

QYBLNCyN Du) = QYD | BrNE,) Q(BLNE,).

The first probability can be controlled by (31), and the second probability by Lemma 12. Inserting these estimates
proves (41).

To prove (42) and (43), we apply the ballot theorem under a change of measure similarly as in the proof of
Proposition 10, with the barrier given by (36). The starting location of the BRW at time t, is & — ¢, which is of
distance £+ K1 loglog x below the barrier 1/1;7K(t~z). The end location of the BRW at time t~z +kpisx—mp_g+g,
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which is of distance O(log min{ky, h}) — g — % + K11 loglog z below the barrier z/J;’K(’tvz + k). Applying Lemma
2.30f [9],if 0 < g < Kslogh,

Q' (B NGy N (H;))
< phm(p=hn kz/ze_x(z_mh*’(+9_(E_e)_m’“h))(k;3/2(£ + Ki; loglog z)(log min{ks, h} + K11 loglog x))
< e 29 min{ky,, h}~3/%(log log m)2e(02—5\)(m(10g 22 "Mk =K~y k)
To further bound the term e(cz_;\)(m(logmﬂ_mh*K_m’“hH"—g), we recall from the proof of Proposition 10 that

ey — A < Kio(log kp,) /Ky for some K19 > 0. Since kp, > logx — 0o as © — 00, we may assume that co — A< c2/6
by letting x be large enough. In this case,

e(cz_A)(m(logz)2 _mth_mkh) g ecz(’rn(logz)2 _mhfk_mkh)/ﬁ << mln{k}“ h}1/4.

Kqg(log k)
In addition, since kj, > logz and |¢| < loglog x, we have e BT < 1. These considerations altogether lead to

Kjy9(ogkp)(£+g)

QYUBL N Cy N (;7)°) < e min{ky,, h} ~/*(loglog )¢ Fh

On the other hand, it follows from the same independent sum argument leading to (31) that QY(%y, | %, N %, N
d—1

(A;F)°) < == . This proves (42).

If g < 0, we take advantage of the rare event that two independent descendants run distances my_x — g for
time h — K (given by Lemma 28). Applying the same arguments as in Lemma 12 and using Lemma 2.3 of [9], we
have

QB Ny N (7))
< pM(p kz/Ze_:\(“’_mh*K“‘g_@_e)_m"‘h)) (k;S/Q (¢ + K1y loglog x)(log min{ky, h} + K1 loglog x))(|g| + 1)%ec29
< e o2t min{k, h}*3/2(|g| + I)Qecwe(%’;\)(m(logmﬂ*mh*K’m’“hM*g).

Kig(logkp)g

The rest follows similarly as the case g > 0, and we note that e kn < 1 for g <0. O

Lemma 18 (first passage contribution). For —Kj3logloga < ¢ < Kgloglogx, it holds for some K7 > 0 that

Q‘(Fw e Vi s W = 0, Nt (te i) € By, (67)°) < C(e, K)(loglog )7 (log x)x’%e’cﬂ. (44)

Proof. In the following, the asymptotic constants in < may depend on ¢, K. We condition on %}, 6y, Z, and
apply the law of total probability to write

Q(Fw e Vi, oo w = v, Nut, i (ta,i) € B, (6)°)

(log 2)° 45
= Z Z Z Q' (Bw € Vi, o, W= v, Duty i (tai) € Bay (E)° | Zu NCy N By) QY (B N Cy N D). (45)

h=K g€Zuezi-1

Let us consider a large constant K5 > 0 to be determined, and separate into three cases depending on the values
of g. In the following, the asymptotic constants may depend on e.
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Case (a): g > Kylogh. In this case, we do not condition on %2, but directly apply Lemmas 12 and 13 to get

(log 2)*
> D). QBwEVL, o w v, Nui, x(tek) € Ba,y ()| Zu NGy N B1) QY (B0 €y N )
h=K g>KsloghuecZi-1
(log z)?
= Z Z QZ(HU} € ‘/trp,K7 w =, nw,tm,K(t?ﬁ,K) € By, (gé*)c | ng N ’%jh) Qe(‘@h N ng)
h=K g>Kslogh
(log )
d—1
< 3 e Ty min {1, (g 40+ DO e (g 4+ ) b mingL, (1] + D))
h=K g>Kslogh
(log )* s
=Y min {1 DO e slg+ 0 b
h=K ¢g>Kslogh
(log )* s
< Z (|Kslogh+ €| 4+ 1) min {1, emc2(Ksloghth) ) ve 5(Kslogh + E)}hd_lx_T
h=K

¢ _d-1

< (loglog x)e™ "™ "% Qoga)2,5(£),

where in the last step we pick K5 large enough.
Case (b): 0 < g < Kslogh. We further split into two sub-cases. First, consider u such that ||u|| < v log h.
We first compute an upper bound for

Q' Bw e Vi o, w = v, Nus, o (ta.k) € By () | D NE, N B).

Conditioned on %), N 6y, the event that ¢, , (tz,x) € B, holds implies w > vica. Denote by B, the unit ball
centered at z € R?. By independence (see footnote 10),

Qe(ﬂw € Vipir W0, Nusty i (te i) € Ba, (67)° | DuNCy N Bh)

< sup P(H’U €V k, nv,th(h — K) € B(mh,K—g,u)» (@@;)C | jth,g)
ueRd-1 (46)

< Su;) ) P(HU € Vh_k, "h;,h—K(h — K) S B(mthfg,u% (@(');)C),
ucRa—

where the last step is because for g > 0, the event .%,_g 4, that two descendants of vic, separated at first step
both reach H, at time ¢, x have a probability > 1, and hence we may remove the conditioning on %, 4 in (46)
without changing the asymptotic upper bound. We have also abused notation by using é”ﬁe to denote the event
that the BRW is constrained by the barrier

4
mp—k + —(logmin{k,h — K —k});, 1<k <h-K;

k
k+— Llogh
— Llog +h—K o

see (33). By Lemma 23 and a standard change of measure computation, we have uniformly in u € R4,

P(3v € Vi e, o ic(h— K) € B, _—guys 650) < ge(logh)2(h — K +1)~ %

Therefore, we arrive at

_d-1
2 .

Q(Bw € Vi 1o W =0, Nuty i (ta,ic) € Bay (E)° | ZuNCy N B) < ge?(logh)?*(h — K + 1) (47)

Since the event (#,*)° depends only on times [tz, ts -+ kn) once we know a descendant of the latest common ancestor
reaches B, at time t, i, we obtain also that
_d=1

2 .

(48)

Q(Bw e Vi, 1oy W =0, Nty i (taic) € Ba, (6)° | DuNCy N By N (7)) < ge?(log h)?*(h — K + 1)
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Fix h € [(logz)? — log x, (log 7)?], i.e., kj, <logx. Applying (47) and (41) of Lemma 17, we have

Ks logh
Z Y QBCwEVh o, WV, Qut, g (o) € Bay (67)° | Du NGy N B1) Q (B N Cy N D)
uezd—1
[lul|<VRlog h
Ks logh u
< Z ge?(logh)*(h— K +1)" = Z QB NECyN D)
9=0 uezd—1!
lull <Vhlogh
Kslogh
< Y ge(logh)2(h— K + 1)~ (Vhlog h)* a5 min {1, (19 + €]+ 1e™* o0 59+ 0)}
g=0
Ks logh a1 h %
b 5;) i {1, (lg+ €+ Dem 2000 002 5(g + f)}gec"‘g(log W) (m) '
The above quantity after summation over h is thus bounded by
(log z)*? Kslogh L h dQ;l
—c ¥4 c d _d-1
Z Z mm{ (lg + £+ 1)ec2lot )¢(logx)2,6(9 Jrf)}ge 29(log h) a2 (m)

h=(logz)2—logz 9g=0
d—1

< (loglog z)%X7(log z)z~ "= min{e~**¢, 1} < (loglog )% (log x)x*%e*”e,
(49)
where we have used an integral approximation of a sum. Next, we consider h € [K, (logx)? —logx], i.e., k, > log z.
Applying (48) and (42) of Lemma 17 and using that h < (log x)?, we have

Kslogh

Z Y. QBwE Vi w0, Mg, i (tei) € By (6)° | Za NGy N B0 0 (H57)°)

UEZd 1
[ul|<Vhlogh
x QBN C, N DN (H7)°)
K5 logh
d—1 d—1 Kig(log kp)g
< Z ge?(logh)*(h— K +1)" "= Z 7 e 29 min{ky,, h}~/4(loglog z)%e™ Fn
g=0 uezd-1

[lu <Vhlogh

h a1 Ks logh Kio(log ky)g

<<min{kh,h}_5/4(m>Tx_% e~ (log h)4* ! (log log x)? Z ge  Fn

< min{kh,h}_5/4a:_d ~<2f(loglog )12,

where in the second step, we used that #{u € Z?~' : |ju|| < Vhlogh} < h“T (log h)4~1. Summing over h, we
obtain

(log )% —log x
d— d—1
Z min{ky,, h} %4z e *(loglog z)K12 <« K2 T e ~<2(log log )12, (50)
h=K

Combining (49) and (50) yields a total contribution of at most
C(K)(loglog x)*7 (log )2~ Tremeat,

Next, we consider u with ||u| > v/hlogh. In this case, using a change of measure computation (without using
ballot theorem) and a moderate deviation estimate (e.g., Theorem 3.7.1 of [14]), for some § > 0,

Q' Qw eV, 4o, W v, Nuty  (ta,x) € Bay EF4 | DuNGy N By)

< Su}:)z P(3v € Vi, Non—k(h — K) € By, _c—g,—ur)s 61,0)
u'e u

< (h— K)32eIP(||S_k || = [lul])
< W29y 5(|[ul).
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Inserting into (45), we have

(log z)? K5 log h

Z Z Y QGCwEVh o, w v, Qut, g (te.i) € Bay &4 | D Ny N B1) QB N Ey N D)

uez?~!
[ull>vhlogh

(logaz Kslogh

<X Z min {1, (jg + €+ e g slg+ 02~ 3 DT n2e9p,4(ul)

k=vhlogh ueZi™!

lull€lk,k+1]
(logz)? K5 log h oo
< Z Z (lg+ €] + 1)67‘32(9H)x*%h3/26029 Z k42 (k)
h=K g=0 k=vhlogh

loga: Kslogh

< Z Z (lg + €] + 1)e2lg= 5 p=100

< a?_dZ;l C2‘)(loglogsv) ©(og z)2,6(£),

where we have used an integral approximation in the third step and that |¢| < loglogx implies @ (g 4)2,5(£) > 1
in the last step.

Case (¢): g < 0. We exclude barrier events and compute the expected number of particles beyond x at time
ty,kx under the barrier event and conditioned on €. Define the barrier event

Ze= U U {nwm SRR e (- )
weVy, ;o 0<k<h—K
w>v1éa

> Llogh — g+

e - K—|— (logmm{kh K- k})}

for the sub-tree with root vica. Recall from (34) that on the event &Yy, the event Fh,q cannot hold for each latest
common ancestor vic,.

In (45), the sum over u with [Ju|| > v/hlogh can be handled similarly as the case g > 0. By Lemma 29, we
have the upper bound

5HUII

Q' Cwe Vi, oo w = v, Nty i (toxc) € By, &4 | Du Ny N By) < B 2e™
Inserting into (45), we have by Lemma 17 and arguing similarly in the case g > 0,

(log z)*

Y Y QBwEVL w0, Ny, ko (tok) € Ba, 8 | ZuN 6y N Bi) QU(BLNEy N D)
h=K g<0 yezi-1
[lul|>+/hlog h

(log )

. —c c _ i
< 2 Z > min {1, (g €+ Dm0 00000 (g + €) fa T (Ig] + 1)2e>29R% 26
h=K g<0 yezd-1
lull>Vhlogh

(log )

<2 me{ (19 -+ 4+ 1)e™240 Qg aya slg + ) fr~ 7 (lg] +1)%6*29n =1
h=K g<0

d—1
<am 7 e Y (lg+ £+ 1)(|gl + 1)*P(og )25 (g + £)e??
g<0

d—1
Lz 7 eicﬂ@(log 1‘)275(6)'

Note that, contrary to the case g > 0, here we do not have any constraint on the value of . The same computation
will be re-used later in the proof of Lemma 21 when considering ¢ > Kgloglog x.
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Let us now consider u with ||u|| < v/hlogh. Using independence (see footnote 10), the first probability on the
right-hand side of (45) can be controlled by (similar consideration as the case g > 0)

Q' Fw € Vi, 4o w0, Moty g (taix) € Bay Ty | DuNCy N B)

< sup Qe(aw € ‘/tm,K’ W > Vlca, nw,tm,K(tLK) - nw,tm,K(tfﬂ - h) € BCE - (it — Mh—K +gvu/)v <?f;;,g | jhflﬂg)'
u’€Ry

Therefore, by Lemma 29,
Q AW € Viy o, W = 0, Nty (b i) € Bay Ty | Du NGy N By) < (logh)2(h— K +1)"F . (51)

Similarly as in (48), we also have

Q' Bw € Vi o, w = v, Nty e (ta ) € Bay Ty | Du Ny N B0 (7)) < (logh)(h— K +1)"F . (52)
We then apply (51) and (41) of Lemma 17 to get for (logz)? —logx < h < (logx)?,

(log z)*

> Yo Y QBweV . ws v Nu, i (tak) € Bay &4 | Du Ny N B)

h=(logz)2—logz 9<0 ygzd-1
lul <Vhlogh

x QY (BN C, N D)

(log z)?

d—1 d—1
< > > > (oghP(h—K+1)7 T a7 g+ (gl + 1)%e 2 p0g 0y2,6(g + £)

h=(log)?~logz 9<0  yez-1
[l <V log

(log x)? d—1
d—1

<z me = Y Y (logh)™ g + (gl + 1)2662980(1%@2,5(9“)( i
h=(log z)2—log = 9<0

< 277 ([0] + 1)e~* (log z) (log log )@,

= )

where in the second step, we used that #{u € Z4 ! : |u| < Vhlogh} < h%(logh)d_l. For K < h <
(log z)? — log x, we apply (52) and (43) of Lemma 17 to get

(log z)%—log x

Yoo Y QUBCwEVi o w v N (tex) € Bey ()| Zu Ny N B0 (A7)

h=K g<0  yezd-1
lul|<VRlogh

x QY By N Cy N D N (H7)°)

(log z)%—log x Klo(log kp)g

_d-1 _d-1 __ . _ .
< Z Z Z (logh)Q(h—K+1) 2 r ?Te 2Zmln{k:h,h} 5/4(10g10gx) (|g|+1)2 296 %,
g<0 uezd-1
lul|<Vhlogh

(log z)%—log x
< Z min{kh,h}_5/4K%x_% ~<2t(Jog log ) K12
h=K

<z Te ~<2f(loglog )52,
In total, we have a contribution of
C(K)m_% ~2f(log 2)(log log )+,

In summary, using that —K3zloglogz < £ < Kgloglogx implies |{| < loglogx and that ¢(16g4)2,5(f) < 1, we
conclude the following upper bound of (45):

C(K)(loglog )57 (log m)x_%e_cﬂ.
The proof is then complete. O

Remark 6. The reason we restrict to £ < Kgloglogx is that after multiplying the first passage contribution by
the particle density from Proposition 10 and summing over ¢, the loglogx power term in (44) will explode. In the
following two subsections, we deal with the other case £ > Kg¢loglogx.
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3.2.5 Local barrier events, III

For the case £ > Kgloglogx, we need to adjust the local barrier events in (40). Before this, we remove one
more event that the heterogeneity index is close to (logx)? and g is small simultaneously. Let Kg > 0 be a large
constant to be determined. Define the event

14

&g 1= ( U <gg> N ( U %) - {gv > _7} N {hy = (logz)* — Ko}, (53)

Ky
g=2—t/Ky (log z)2 — Kol<h< (log x)?

where K4 > 0 is a large constant to be determined.

Lemma 19 (Removing the event &3 ;). It holds that for some § > 0 and all ¢ > K¢loglogx,

d—1

Qé(Elw € Vipror W= U, Nut, 5 (te k) € By, 63) K e*(c2+6/4)z(logx)2(d*1)x77.

Proof. We first need an improvement upon Lemma 12. For (logz)? — Kof < h < (log )2, we have by independence
that

@e(%h N %g) < P(M(logz)2—h >g—mp_g+ M(log x)?2 + E) < IP)(—]\4(10gr)2—h > M(log z)2—h +9+ é) (54)
Since (logz)? — Kol < h, g > —¢/K,, and ¢ > Kgloglog x, we have uniformly,

Mogz)2—h + g+ 1 clKgf—%loglogx—k(l—K;l)f

z = = = 0,
Tt (logz)2 — h Kol et o

for some §y > 0 and all Ky, K¢ picked large enough (say, uniformly for all Ky > 2 and Kg > 10/¢3). Note
that I is strictly convex in a neighborhood of ¢;, which follows from Theorem 26.3 of [38] since (A4) implies
that £ has exponential moments in a neighborhood of ¢y and hence log¢¢ is smooth in a neighborhood of c.
Consequently, I(rgnee) — I(c1) = (ca + 01)(7g,n,e,c — c1) for some d; > 0. Let us pick €9 > 0 small enough such
that (ca +d1)(1 —eg) = ca + ¢ for some § > 0. Then, with K4, K¢ picked large enough depending on e,

L Maogapontg+l o gtl—Glogloga o (1-co)(g+0)
g.hbw = (logx)2 — h = (logx)2 — h = (logx)2 —h
It follows that ( 5)( 0
Cco + g+
(logz)2 —h ~

Consequently, by Cramér’s large deviation upper bound and the union bound, for some § > 0,

I(Tg,h,é,ac) - I(Cl) 2 (02 + 51)(7"g,h,€,£ - Cl) >

2_
]P)(M(logw)Q—h > M(logz)2—h +g9+ () < p(logz) h]P)(S(logw)?—h > M(log z)2—h +g+ 6)
< ¢~ ((log @) =h)(I(rg,n,e,0)—1(c1)) < e (2t (gt

By (54), we then arrive at
QY (B NECy) < P(Mogay2—n > Mogay2—n + g+ £) < e~ (2T (55)
By Lemma 13 and (55), with K, picked large enough,'!

@z(aw S W$,K7 w > v, nw7tw,K<tw,K) S Bwa g&l)

(log )
< Z Z Qe(aweww,K7UJ>‘Ua T’w’tw,K(tz,K) EB17 603,2 |cggm%h>(@g(%hm(gg)
h=(log )2~ Kol g>—£/K4
(log )?
< > 3y (log )24~ (e2+0)(g+0) =45

h=(logz)2— Kol g=>—0/K4

< e_(02+5/4)e(1og x)z(d_l)x_% )

This finishes the proof. O

M Here we omit the case [¢] > z!/3, in which case the first passage probabilities decay exponentially in ¢ if £ > z1/3, and can be
trivially bounded by 1 if ¢ < —z1/3.
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On the event &7 ,, we may adjust the barrier event &, as follows. Define for some large constant Ks the
following barrier function
k—t,

2K, , - ~
Mgyt + c—;(logmm{k —tar e — k), te <k <teg (56)

sz(k}) = E+ m

and the local barrier event

so= U (@0 U (U s> e} (U scltan) € 52)) )

K<h<(log )2 — Kol u€Viy—n  T,<k<to—h weVi,

wu
(57)
The following considerations are similar to Section 3.2.3, with a different range of . To bound the size of &, ¢,
define _
T. :=inf {k € [fostorc] : U € Viyu = v, mu s (k) > %K(/{)}.

By Lemma 3 (with 8 therein given by ¢ as the random walk starts from [ — ¢ — 1,7 — ¢), and coefficient of log
replaced by 2Ks/cs),
QE(T% =1, +j) < min{j, (logz)* + 1 — j}_KSEe_C"‘ZgO(IOg 2)2,5(£).

We may then calculate the total contribution in the case where the barrier is crossed for a fixed ¢, on the event
g > —{/K4 (and hence h < (logx)? — Kol since we excluded the event & ;). By Lemma 13 and since the barrier
event is measurable at time t, — h,

(log )2 — Kot
QEeneg)< Y, Q (% N{T;, <ta—h}N ( U (o wclter) € Bm})))
h=K weVi,
wu
(log )?— Ko (log @)*—h
d—1
< Z B2~ 55 e o oy 5(0) Z min{j, (logz)? + 1 — j} K¢ (58)

h=K 7=Kot

(log z)%— Kol
d—1
< x7766762zw(10g$)2)5(€) Z Rt max{éiKg/Q, h—Ks}
h=K

< x_%ee_wew(log 5)2,5(6) (Kd_l_K8 + K_KB/Z (1Og x)Qd) .

3.2.6 Local hitting probabilities, III

In this section, we prove an upper bound of (29) in the case £ > Kgloglog . The main improvement compared
to Lemma 18 stems from an improvement of Lemma 17, after removing the (unlikely) barrier event & ¢ up to time
t, — h defined in (57). Here and later, we denote by

=810 U3 USyy (59)
and
A= ( U (U Deen® > 0ex®) 0 (U Dwrltor) € BY)).
u€Viy—n  T,<k<tse—h weVi,
wUu

Note that 810 = Ugcne(log ) ioe Hhs 50 that &7 C 7 for all k < h < (logx)? — Kol.
By the same independent sum argument leading to (31), it is not hard to see that

QU | Bn NCyNHE) <2~ (60)

In view of the upper bounds in Lemmas 26 and 27 below (which we will apply with e = 1/3), we fix a large constant
L > 0 and define the following auxiliary function

xyn3/2 if

—4/3 3/2 (61)

0
2
min{zn +zyn~ 6_%7%071,6(1/)} if y

D, 5(x,y) = {

where z € [0,0(n'/%)]. The function ®,, 5(x,y) serves as asymptotic upper bounds of ballot probabilities. Recall
also the short-hand notation kj, = (logx)? — h.
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Lemma 20 (size of the event %, N6, N #,°). Assume that { > Kgloglogz, k, = (logz)> —h > Kyl, and
g > max{—t/K4,—k}'°}. Ifg >0,

K10 (log k) (+9)
QB N €, N HE) < e+ min{ky,, h} /4K 2ema12K28, ((logmin{ky, h} — g)+, O)e . (62)
If g <0,
Ql(gh N (gg N L%/hc) < e—@ﬁ min{k‘h, h}—5/4k2/2(|g| + 1)266296—C1C2K/2
K008 k) (¢) (63)
X @, s((logmin{kp, h} —g)+,0)e . )

On the other hand, in the case where —0/ K, < —k,{/G, we have for g € [—£/ Ky, —k}ll/ﬁ) that

Kig(log kp)(£+9)

Q' (B N %, N ) < e minfln, B} 12 (g +1)2e 2967125 200y 12 5 (D)e o (64)

Remark 7. It is instructive to compare Lemma 20 with Lemma 17. First, the two results are based on
different local ballot events: Lemma 17 excludes the event &1, U &2, and Lemma 20 excludes the event
E10U 3¢ U Eyp. Second, both results require a lower bound for kj, which greatly helps dealing with the ex-
tra term e(°2 ™M (Maog )2 =mr—x =Mk, +0+9) iy the ballot probabilities. Third, for the case ¢ > Kgloglogz, we need
extra preciseness in controlling the ballot probabilities, since the bound used in Lemma 17 is not tight for ¢ large.
This stems from Lemmas 26 and 27 in Appendix C.2, and results in the terms involving the function ®y, 5 in
Lemma 20. The proofs are quite similar, both applying ballot upper bounds under a proper change of measure.

Proof. The barrier given by (56) starts at location Z = (Z — £) 4 £ at time t, (where we recall & = z — M(log 2)?)
and ends at location

K, . . aK
+ mm(logm)z + Zg(logmln{kh, hY)+ <x—mp_x + g+ (O(logmin{ky, h}) — g — IT)
at time ¢, + kp, = t, — h. Note that since g > —kfl/ﬁ, we have O(logmin{ky,h}) — g — a1 K/2 < k;}ll/6. Define
X := I/(my, [kn). For g > 0, the ballot upper bounds (Lemmas 26 and 27, together with Remark 9) under a

change of measure (identically as in the proof of Proposition 10) then gives
QY (%n NCy N )
< phn (p—khki/Qe—)\(x—mh—K+g_(5—z)_mkh))@k}“é((log min{kn, h} — g)4,¢)

< e minfky, b} 32k 212K 28y, 5((log min{ky, h} — g), £)e( N Maog 2 —mn—se =i, +E49),

To proceed, we need control of the final term e(©2 ™M (Maog )2 =mr—x =Mk, ++9) Recall from the proof of Proposition

10 that c2 — X < Kio(log kp)/kp, for some Kqg > 0. Since ky, > Kgof and ¢ > Kgloglogx — 0o as © — 00, we may
assume that c3 — A < ¢2/6 by letting = be large enough. In this case,

6(02—)\)(m(10g2)2 —Mp— =Mk, ) < ecZ(m(logJ;)2 —mp_Kk—my,)/6 < min{kh,h}1/4.

Combining the above leads to (62).

For the case g < 0, we need to exploit the rare event that two independent descendants run distances mp_x — g
for time h — K (given by Lemma 28). Applying the same arguments as in Lemma 12 and using the ballot upper
bounds (Lemmas 26 and 27),

Q' (B NCy N )
< phn (p kP A ktg = @=O=m )Yy s (log min{kn, b} — g)1, £)(lg| + 1)%e29
< e mindly, b}~ (g + DRe0e 02y, g (logmin{n, b} — g) 4, el syt i H50)

The rest follows similarly as the case g > 0.

Finally, for g € [—¢/Ky, —k,ll/ 6) we apply the same proof as above while bounding the ballot probability by
Plog z)2,5(£) for some § > 0, instead of @y, s5((logmin{kp,h} —g),¢). We omit the details here. O
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Before proceeding, it is helpful to simplify the quantity ®y,, s((logmin{ks, h} — ¢)+,¢) appearing in Lemma 20
a bit. By adjusting the constants § and L and since kj, < (logx)?, it holds that

ki/Qq)khﬁ((lOg min{khv h} - g)+, 6)

{(log min{kp, h} —g)+ for all ¢ > Kgloglog x; (65)
__se?
< 4 (logmin{kp, h} — g); (log )3 + £(log min{ky, h} — g) e Goxo? i > gz,
P(log x)2,6 (z) for all £ > Kg log log x.

Recall also (26) and (59).
Lemma 21 (first passage contribution). For ¢ > Kgloglogx, there exists C(K) > 0 such that
QZ(EI’U) S ‘/;SI,Kaw -, nw,tIYK (tx,K) € Bz» (gzc)
< e KA ety s s (0) (75 Torn? 4 (log log a:) “H30—1/8 585
+ O(K)l'7%536762e6762£/(2K4),
where the asymptotic constant in < does not depend on K, x,¢ but may depend on €.

Proof. In the following, the asymptotic constants in < may depend on € but not on K. We condition on %), N %,
and divide into four cases: g > Kslogh, 0 < g < Kslogh, —¢/K4 < g <0, and g < —{/K4.**
Case (a): g = Kslogh. We apply Lemma 13 and (62) of Lemma 20 to obtain

log z)?2— Kot
(log )

3 S e T QB NG N )
h=K

g>Kslogh
(log )2 — Kol
_d—1 _ _ _ . — 3/2
< 77T el r2K/2 E he Y min{ky, h} 5/4l<:h/
h=K

KigUogky)(Ltg)
x> e 9y, s((logmin{kn, h} — g), e
g>Kslogh

- (log z)%2—Ko? oo (o k) (4K log h)
_a-1 _ _ 11— . _5 3/2 . ——ho o =
< g7 e clemoreK/2 E hi=1=e2Ks min{ky,, h} ‘J/4kh/ Dy, 5((logmin{kp, h})4,0)e *° Fh

h=K

We split the sum over h depending on whether kj, < h or kj, > h (recalling the definition that k; = (logx)? — h).
We have for K5 large enough, by (68) below,

(logx)?/2 (log kp,) (44 K5 log h)
ST rtte ks min{ky, )y Yk Dy, s((log minfky, k)4, O 0T
h=K

(10gm)2/2 £loglog x

< S nTOR Py, 5((logh)y, 0 WS
h=K
2K10% log.l,c,)gzz
< \If(logz)z’g(f)e (ogx) |

12The three cases g > Kslogh, 0 < g < Kslogh, and g < 0 as discussed in the proof of Lemma 18 do not suffice due to (53).
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and

(log )2 —Ko¥

(log kj, ) (£+ K5 log h)
S R mingky, )Yk 2Dy, s((log mingkn, BY) 4, e 0T B
h=(log xz)2/2
(log 2)* — Kol _5/4,3/2 oo (o8 hy) (42K log log @)
< Y RO, s((logkn) g, O Fh
h=(log x)?/2
(log ©)? — Kot
< (logz)™1 STk SRy, 5((log k)4, £)£F 10/
h=(log x)?/2

< (log x)—lOO\I,(log z)z’g(f)eKw/Kg_l/‘l < \I’(log 1)2’5(@,

where we have used kj, > Kol and £ > Kgloglogz — oo in the second step, and Ky picked large enough (depending
only on K1) in the last step. Altogether, we conclude that
(log ©)? — Kot

£loglog =
K g l0g
10 log )2

_ _d—1 _d—1 _ _ 2
h e QBN EC, N HE) < am T emlem e KI2g s s(0)e
h=K g>Kslogh

In the other three cases, we will use, within the corresponding regions for g,

Q‘Z(Hw € V;fm,x’w v, nw,tz,x(tw,K) € By, (g?:)

(log )2
< h;{ > Zﬁ QBPwE Vi, 4o, w0, M, (tak) € Bay & | DuNCy N By N HY) (66)
=K g€Zuezdi-1
x QB NC, N Du N HE).

For the middle two cases —¢/K4 < g < K3 logh, the asymptotic constants do not depend on the lag time K > 0
(recall that t, x = t, — K). The first conditional probability in each summand in (66) can be controlled in the
same way as (48). We may also apply the same argument in Lemma 17, using now (60), to obtain bounds on
QY%L NEC,; N Dy N ). This amounts to multiplying the right-hand sides of (62) and (63) by o

Case (b): 0 < g < Kslogh. Recall that on the event &5, we removed h € [(logz)* — Ko/, (log z)?]. We further
scrutinize the term ef10(o8kr)(¢+9)/kn that appears in (62). Note that Kjo here does not depend on the other
constants K1,. .., Kg. Since kj, > Kof, 0 < g < Kslogh, and h < (logx)?2, we have for k;, < h,

(log kp,) (£+g9) 2K1glogky loglogz | Kjgllogky, log £ log log @
ST CeT e R e w /S (67)
for Ky picked large enough depending only on K1g. For kj, > h (and hence kj, > (logz)?/2 and g/ky, = O(1)),
(log k) (¢+9) (log kp,)¢ floglog @
e < 0T < A ot (68)

For ||ul| < vhlogh and 0 < g < K3 logh (note that we may start the sum from h = K), we compute using (62)

34



of Lemma 20 in the first step and (67) and (68) in the third step that

(log z)%2— Kol K5 log h
Z Z Qe(ﬂwe‘/}mx,w%u Nty i (te, i) € Bay 67 | Du NCy N By N H)
h=K uezd—1
lul|<VRlogh
x Q“(BnNEC, N DunN H)
(log z)?>— Kol K5 log h

) Z Z > (ge(logh)(h— K +1)7°F)

uezd—?
lul|<VRhlogh

Kig(log kp)(+9)

X ($7%6762£ min{ky, h}*5/4670296751CZK/QkZ/QQ)kh,(;((log min{kp, h} — g)+,0)e Fh
<< efclczK/wa%eché

(log z)%— Kof L i (log k)¢
Y (logh)dJr?’kz/Q(I)kh,(;((logmin{kh,h})+,€)min{kh,h}’5/4(m) Ko
h=K
—cr1eaK /2, — 951 eyt (ogel /2 )d+3 3/2 —5/4 h T ok oslons
Le N e Z (log h)* k) " @y, s((log h)+, O)h (m) e (los®)
h=K
(log z)? — Kol

©Y (logloga) Y2, s((loghn)s. Ok, e )
h=(log z)2/2

x

_ _d—1 2K, Hloglog @ _ log £ log log
<e R Czl\:[/(logx)2,5(€)(e 10 (og )2 (10g10g$>d+3£ /8¢ 8l ),

where in the last step we used (65) and (26). The case of ||ul| > v/hlogh can be dealt with in the same way as in
Section 3.2.4, leading to a contribution of 2~ =" min{e=2¢, 1} ¢ 10g )2, (£).-
Case (c): —¢/K4 < g < 0. Similarly as the way we derived (67) and (68), we have

(log kp,) (¢+9) (log k)¢ 2K o Loslon e if & h

Ko dogkn 9 Ko dogkn e (log =) 1 > h:

e’ kn e Fn < log ¢ log log @ . h =" (69)
e 87 if k, < h.

We first consider the subcase where max{—¢/ Ky, —k1/6} < g < 0. Again the sum over ||u|| > v&logh can be
controlled similarly as in case (c¢) in the proof of Lemma 18 (which only used g < 0 but has no constraint on the
range of £). Recall that restricting to the event &3 , allows us to remove the sum over (h, g) such that g > —¢/K4 and

h > (logz)? — Kof. Applying (63) of Lemma 20 and (51) in the first step, that #{u € Z¢~' : ||Ju|| < Vhlogh} <

35



h'T (log h)4~! in the second step, and (69) in the fourth step, we have

(log w)2—Kgé

> > > QB NECN Dun H)

h=K  max{—t/Ks,—k/°}<g<0 uez?™!
lul| <7/ log

x Q' Cw € Vi, o W= v, Nty (to. i) € Bay 65| Du Ny N By N HE)
(log z)%— Kol

< ¥ 3 > ((ogh)*(h—K +1)=%F)

h=K max{—¢/Ka4,— 1/6}<g<0 uezd—1!
all <V log b

Kqg(log kp)(L+9)

X (:c*%e*”é min{ky, h}*5/4(|g| + 1)266296701CQK/ka/zékhﬁ((log min{kp, h} — g)4,0)e Ep

(log z)2 —Ko?

< 6*6162K/4x*%67025 Z (logh)dJrl min{ky,, h}~ 5/4, Klow
h=K
x > (lg + 1)2e29k3 2y, s((log min{kp, h} — g) 4, 0)
max{fé/K4,7k,11/6}Sg<0
(logm)2—K9€ log k. )¢
< ek ag= Tt ement ST (19 i) min{ky, b} TR 18 20, s (log mind, B} 4, )
h=K
(log)?/2
< ecl”K/‘Lxd;lecﬂ( Z (logh)d+1h*5/462K1°2812?5?21k/‘1>k; s((logh)4, 0)
h=K

(log z)? — Kol
lo Zlo log x
+ ) (logh)™k, T k3/2¢’kh5((10gkh)+7f)>
h=(log x)2/2

Lloglog

< eiClCZK/‘*m’%efcze\l/(mgx)?,é(@) (ezKlo s 4 (log log x)d+3€’1/46710g“§?1°“)7

where in the last step we applied (65) and (26). In the other subcase where —¢/K4 < g < —k), 1/6 , applying (64) of
Lemma 20 yields

(log 2)2 —Ko?
> > Y QBweVL, o, w v, Qut, i (tok) € Bay & | DuNCy N By 0 K
B AR v
x QY B NC, N Du N HE)
a1 (log 2)* — Kot Kig(og k) (+9)
< emereaK/Ay =5 pmeat Z (log )™ min{ky,, h} /4 Z (lg] + 1)2662916'2/26’“7
h=K —/Ki<g<—ky/®

1 2— Kot
—creaK /4, — 951 702€(Og$) ’ d+1 —5/47,~100 Hrologhky)Ere)
<e Tz e E (log h)“"" min{kp, h} kL, 0aog )2, (£)e Fn
h=K

£loglog x

< e‘clc?K/‘lx_%e_cﬂ\I’(ng)?,a(f) (62K10 (og)? (loglogm)d+3£_1/4ebgu§#),

where in the last step we also used Q(1og 2)2,5(£) < (10 2)2,6(£) for £ > K¢ loglog x.
Case (d): g < —¢/K4. In this case, we cannot use Lemma 20, but we use Lemma 17. The sum over |u| >
Vhlogh can be controlled similarly as in case (c) in the proof of Lemma 18. We obtain using (51) and Lemma 17
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that
(log z)?
>y Y QBweEV: w0, Qut, i (tek) € Ba | ZuNCy N By 0 )

h=K g<—t/Ki uez'—!
lull<v/F log

x Q' (BN C, N DN )

(log )?
<> Y Y QBWEV o, w0, Nty i (tex) € B | Zu N6y N B) Q (BN €y N D)
h=K g<—{/K4 uezdi-1

llul|<Vhlogh

(log )?

<% Y ¥ S (Qogh)?(h— K +1)7F)

h=K g<—0/Ks uezi-?

| <v/7 log
x (min {1, (lg + 1+ e 0059+ 0 b mingL, (gl +1)e)%})
s (log z)? N %
<a™ T3 (logh)™ 30 min {1 (g + €+ Ve pgog sl + ) ol + 1% (557
h=K g<—C/K4
d—1 (1C§)2 ( / ) ( h )%
< x T (log h)d+1 £2€—202€ 4 Z3e—cﬂe—02£ Ky
= h—K+1
< C(K)x_% (log x)?’e_C?ee_C?[/(QK“),
where in the last step we bounded (log 2)?*! by log z.
Combining the above four cases finishes the proof. O

3.2.7 Combining everything above—proof of Theorem 11
Our goal is to bound from above the quantity
Q'Bw e Viexs W =V, Nty (L, k) € Bz).
We divide into three cases according to the range of /.

e Case I: £ < —K3loglogxz. We apply Lemma 13 to bound directly

d—1

QCw e Vi, o, w = v, Mo, (ta, i) € By) < (log )24V =5,

o Case II: —K3loglogx < ¢ < Kgloglogx. We get from Lemma 18 that while excluding the local ballot event
&, the rest satisfies

Q'Qw e Vi s W = 0, Nt o (te i) € By, 674) K C(e, K)(loglog z) %7 (log a:)x*%e*”[.
Combining this with (35) and (39) yields Theorem 11 for —K3loglogx < ¢ < Kgloglogx.
e Case III: £ > Kgloglogz. The event &3, contributes
67(C2+5/4)e(10g x)2(d71)x7% (70)
by Lemma 19. We get from Lemma 21 that while excluding the ballot event &%, the rest satisfies
Q'Bwe View»W =V, Nu i, o (te, k) € Bz, 67)
< C’(e)eiClC?K/‘lx*%efczzq/(log 2)2,5(£) (62K10% + (loglog x)d+3£*1/gelogug§ s )
+ C’(K)af% (log x)?’efcﬂe*cﬂ/(ﬂ(‘*),
The second term C(K)x_%(log x)3e02te=c2t/(2K4) on the right-hand side above together with (70) con-

tribute at most C(g, K)e~(©2T3/9¢(1og x)g’dx_% for some ¢ > 0. Taking into account (35), Lemma 19, and
(58) leads to the desired bound in Theorem 11 for £ > Kgloglogz.

These considerations conclude the proof, given the definition of I, , above Theorem 11.
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4 The general non-spherically symmetric case

Our cluster approach in the spherically symmetric case (Theorem 1) also extends to the general case (Theorem
2). Unfortunately, the notation becomes much heavier, although it is intuitively clear how the proof can be modified,
as we will explain below. We have chosen to focus on the spherically symmetric case for clarity of our presentation
and to avoid repetitions. In this section, we comment on the necessary changes to prove Theorem 2, and the details
are left to the interested reader.

Overview. Essentially, our approach reduces the study of the d-dimensional BRW to that of its projection onto
a certain one-dimensional direction (pivot) c; € R such that the first passage event to B, is reasonably close to a
certain first passage event of the projected BRW (to the projection of the target B,). The underlying mechanism
of this approximation is that the range of a non-symmetric BRW grows roughly as a convex shape that linearly
expands in time, and ¢, is the normal vector to the tangent hyperplane between the convex shape and the ball B,.
For example, in the spherically symmetric case, ¢y is along the direction of the first coordinate (i.e., a constant
multiple of e;). The non-symmetric case requires the same techniques, up to finding the correct pivot ¢y based on
the rate function I(£), which is given below (3).
Let us formulate the new projection. In the spherically symmetric case, we follow the projection

nv,n(k) = 77v,n<k) e + (07 ,ﬁv,n(k))

Instead, we now decompose
Mon (k) = 1%, (k) c2 + 075, (K),

where 12 (k) € R? is perpendicular to co, i.e., M52, (k) - c2 = 0. The proof of Theorem 2 is mostly verbatim, while

v,n

in the two paragraphs below we spell out a few details that differ from the proof of Theorem 1.

Identifying the constants in the preliminary results. Let us re-discover the formula (4) based on a cal-
culation using the BRW projected onto c3. The one-step jump distribution is {2 := £ - ¢3. Using the definition

I(ci1e1) =logp and ¢ = VI(ciey), we have

E c2-§
s, (o1~ ogBle ) ~logp and e = G

It is then straightforward to check that the supremum in

752 (cie1 - c2) = sup ()\5161 cCy — IOgE[eAfcz])
AER

is attained at A = 1 and the value of the supremum is log p. This has two consequences. First, the linear speed of
the BRW with jump £°2 is ¢j e - ¢, which gives the linear coefficient in (4). Second, when dealing with the projected
BRW, the analogue of the constant ¢y in the results presented in Section 2.1 becomes =1 Consequently, the
logarithm correction term is

d+2 +
—~———logzr = ——loguz,
2)Cie; - cy 2cie; - €2

giving the logarithmic correction term in (4).

Conditional local CLT in the direction c;. While the cluster structure remains unchanged for the one-
dimensional BRW projected onto cs, certain modification is required to turn the size of the clusters to the local
hitting probabilities (that is, given a trajectory that advances in the direction co, we compute the chance that it
reaches the ball B;). In the spherically symmetric case, this is driven by the conditional local CLT (Lemmas 9 and
14). The selection of the vector ¢y is exactly such that the analogous local CLT holds in the new direction co. We
showcase this by providing the proof to a more general version of Lemma 9, given by Lemma 30 below. The same
extension to Lemma 14 can be done similarly.
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A Index of frequently used notation

Deterministic quantities

d Underlying dimension of the BRW, d > 1
{p;}izo0 Reproduction law of the BRW
I3 Jump distribution of the BRW
I(x) Large deviation rate function for the first coordinate £ of &
T (x Large deviation rate function for &
P Expected number of descendants at time one, p = j>1JPj
c1 Defined through I(c;) = logp
C2 I/(Cl)
1 Defined through 1 (¢1,0) =logp
cs VI(c,0)
My, (One-dimensional) maximum asymptotic ¢1n — ﬁ logn
te First passage time asymptotic é + Qdc;rfl log x in dimension d
1797 ty — K
T Tr — m(log x)2
ta t, — (log x)? (with the exception of Appendix D)
kn (logz)? — h
on.s() ¢—9lil min(1.1)
@, 5(z,y) Defined by (61)
\I’(logz)z,éw) Defined by (26)
Events
By, h= max{iNL :dug € ‘/tm_%,’l}g,lg € Vipr V2,03 = V1 = U, N, 4, 5 (Lo i) = 2,0 = 2,3}
Vlea The particle v; € Vi, _, realizing the maximum above (latest common ancestor)
ty {Measte—n(tz —h) €[ +g—mp_r,0+9—mp_x + 1]}
Du The event that the last d — 1 coordinates of 1y, +,—n(tz — h) belongs to Ry
Weng {weVi,—n:w>=v, [[Ru—nlts = h)| < h, BrNE} -
&1 Uthg(long UgEZ Uwgl\}/[;rh Uw’thE,K Utm—hgkgtm,;({nw’,tx,x(k) > Ygn(k)}, £ 2 —Ksloglogx
WEWLhg e
&y Uthg(logz)‘z (ﬁh N (Uuevtm,h (U’t;gkgtth{nu,tz—h(k) > w;,x(k)})
ﬂ(UwthM {Nuw,ter (e i) € BT})>), —Ksloglogz < ¢ < Kgloglogx
wu
&3, (U927Z/K4 %g) N (U(logw)Lngghg(logz)‘z %h)y £ > Kgloglogx
S Ursnstossr—rae (230 (User,._, (Uscuctnlc-a(h) > v (1)})
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Q(UwthIx M tar (ta i) € Bg;}»), {> Kgloglogx

wu
g; éig U ggﬁg
& E10UE UL,
Fh.g Uwevi, . Uocksn—x {nw,tz,x(t:v —h+k) = nut, i (ts —h)
W>Vica
> Llogh — g+ emi_x + 2 (logmin{k,h — K — k})+}
.8 UveVn Uogkgn {Uv,n(k) > k% +8+ %(log min{k,n — k})+}
S {nvlca,tmfh(tx —h) — nvlca,txfh(tr) eER x Ru}
jn,g {H’U, w e Vp, 1C&(’U,’LU) = (07 771),77,(”) Z My — g, nuz,n(n) = My, — g}
Fh.g {BweVy,_p, w0, Nyt,—ntz —h)€[x —mp_g +g,c —mp_x +9+1)}
A %10 (Unevi, - (Uncrer -l —n(8) > Yo (0)}) 0 (Uuevi, Ao (torc) € Bi}) )
w=u
Ay 200 (Useni. - (Ur cncrs-nlmue—n(0) > 05 03) 0 (Unevi o Mt i (tax) € Ba}))
wu
S All-time survival event of the BRW
Other definitions
#A Cardinality of a finite set A
w = v Particle w is a descendant of v
0 The unique particle at time zero
B, Unit ball centered at x = (z,0,...,0) € R?
B, Unit ball centered at z € R¢
H, [z,00) x RI~1
Ta First passage time of d-dimensional BRW to B,
M, Maximum of one-dimensional BRW at time n
P, Production number, defined as #{v € V,, : Jw € V, w = v, Nyt (tz) = x}
Ry The rectangle [u1,u; +1) X -+ X [ug—1,uq-1 + 1) for u = (uq1,...,uq—1)
Vi The collection of particles at time step n
Non (k) Location of the d-dimensional random walk that leads to v € V;, evaluated at time k
Ny n (k) The first coordinate of 1, ., (k)
o n (k) The last d — 1 coordinates of n,, ,, (k)

Qf = Qb The probability measure on the BRW restricted to descendants of v,

conditioned on 7, 7 (ty) € [F—¢—1,7—¢) and K

B Escape probability of BRW

The goal of this appendix is to establish the following.
Lemma 22. Assume (A1)-(A4). There exists K; > 0 such that

P(|nun(n)]| 2 1 for allv e V,) < Kie VK
Remark 8. The closest result in this direction is perhaps [44], which studied convergence rates of
P(#{v € V,, : nyn(n) > Ocin} > ™)

for a € [0,logp — I(6c1)). For branching Brownian motion, [35, 36] studied large deviation probabilities of the
number of particles in a linearly moving ball. In particular, the analogue of Lemma 22 for BBM was established
as a special case of Theorem 2.1 of [36]. Our result is quite crude (for instance, we believe that the escape
probability can be improved to O(e~"/%) based on analogues in [35]), but it suffices for our purpose. Additionally,
the arguments required are relatively simple compared to the literature above.

Proof of Lemma 22. By a union bound, it suffices to work in the one-dimensional setting. The strategy is to evolve
particles independently in the periods [0, /n] and [/n,n]. We show that at time y/n, with high probability there
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are e’V™ particles present and located in O(4/n), and with high probability, a certain portion of the particles located
in O(y/n) at time y/n will have a descendant in [—1, 1] at time n.
To carry out the above plan, let §; > 0 be a small constant and we define the events

FE = {#Vﬁ}@él\/ﬁ} and FEo ={|M\/ﬁ|<\§7lﬁ}
It follows from the main result of [44] and Theorem 3.2 of [18] that P(E; N E3) > 1 — 0(6_62\/ﬁ) for some d5 > 0.
On the event E; N Ey, we may identify particles v;, 1 < j < V", where Ny, va(Vn) € [=v/n/61,v/n/d1]. Let S;
denote the survival event of the particle v;. It follows from local CLT applied to £ (see e.g. Lemma 23 of [8]) that
for some d3 > 0,
5.
P(Hw €V, w=vj, Nun(n)| <1 Sj) > \/—%,

and hence using independence, the event

By = {#{w e Voot [run(m] < 1} > 0}

satisfies 5
P(Es | BN Es) >1—(1— —) """ > 1-0(@™).

NG

We thus conclude that
P(||nyn(n)| = 1forall v e V,) < P(Ef U E3) + P(ES | E1 N E2) < 0(6_52ﬁ).

This proves Lemma 22. O

C Some upper bounds of (conditional) ballot probabilities

C.1 A multi-dimensional ballot upper bound

The results in this appendix are essential for establishing Lemma 13 through Lemma 14. Following the seminal
work of [15] on random walks in cones, we prove a multi-dimensional ballot upper bound where the random walk
reaches a target in R¢ and the path projected onto the first dimension is constrained by a linear barrier tilted by
a logarithmic term. The connection to random walks in cones (i.e. collections of rays from 0 € RY going through
a certain open subset of the sphere S?~1) is realized by letting the cone be the half-space {x = (x1,...,74) € R :
x1 > 0}. The following statements are self-contained, but we refer to Section 2.4.1 of [8] for a brief introduction to
random walks in cones.

In the following, let {€;};>1 be an i.i.d. sequence in R? satisfying (A2)—(A4) and S,, = &; +- - -+ &, be its partial
sum. Denote by &; and S,, their first coordinates. Let

(k) = —y — Llogmin{k,n — k},, 0 <k < n,

where L > 0 is a fixed constant. Recall that Ry = [u1,u;+1) X+ X [ug_1,uq_1 +1) foru = (uy,...,ug_1) € R1L.
The following result improves upon Lemma 16 of [§].
Lemma 23. Considern > 1,1 <y < logn, andy+a > 0. Then

J— a+2

P(Sy € [a,a+ 1] X Ry, Sk 2 (k) forall0 <k <n)<y(ly+a)n™ z .

Lemma 24. Considern > 1,1 <y <logn, and y+a > 0. It holds

d+2

P(S, € [a,a+ 1] X Ry, S = —y forall0<k<n)<y(ly+an= "z .

Proof. This follows from the derivation of Lemmas 27 and 28 in [15], along with their Theorem 1. Note that p =1
therein since we take the cone to be the half-space {x € R% : z; > 0}. The results in [15] were stated in the lattice
case but the derivation of Lemmas 27 and 28 depends only on the non-singularity of the jumps (which is in turn a
consequence of (A5)) but not the lattice property. O
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The proof of Lemma 23 follows a similar route as the proof of (11) in [9], while in the proof we apply now
Lemma 24 instead of (6) of Lemma 2.1 therein.

Proof of Lemma 23. Let 7 be the first time in [0, n] at which Sy takes its minimum, and suppose that a > —1/2.

We split into cases depending on the value of 7 and apply a union bound. By symmetry of the function v, we may
assume 7 < n/2. Define I, :== Z N (y7,n/2] and

Quy = {Sn € [a,a+ 1] x Ry, Sk

={S, € [a,a+1] x Ry, Sk

—y forall0 < k < n},
(k) for all 0 < k < n}.

VoWV

It follows from Lemma 24 that (using a > —1/2)

y+Llogk . .
U+ +a)
P(rel; )<y Y 270
Yy ,y) = = k3/2(n _ k/’) d;—2

y+ Llogk +1)2(y + Llogk +a _ax
< Z ( — ) ( d+2 ) < (y_|_a) 3/2 )
kel, k312 (n — k)

Next, we consider k& < y'%'9. On the event Q4 \ Quy, we have Sy € [~y — Llogk,—y|. Therefore, by

independence before and after time k and Lemma 24,

P(r =k Uy, \ Q)
< P(Sy € [~y — Llogk, —y])

X max sup P(S;20foralll<j<n—kS,_p€lat+z,a+2+1] X Ry)
z€[—y—Llogk,—y] w eRé-1
'l ull/2

d+2

<y Zix(a+ty +10gk)n_¥ <y 3A(y+an T,

where the upper bound for P(Sy € [—y — Llogk, —y]) follows from the same reasoning as below (91) of [9].

For k € (ylg/ 1097, we again apply independence of the random walk before and after time k. We have in this
case the boundary of Q;y is at most < y'* below that for Q,, , uniformly in k € (y'9/19 7). Therefore, applying
Lemma 24 twice yields

d+2

P(7 = ki, \ Q) <y k2 x (y +log k) (y +logk + a)n™ " <y 10y + )k~ 20

Combining the above estimates yields that for all u € R?~1,

y19/10

—di2
P, \ Q) < (y+a)y~ 20~ % ¢ Z y 2y +an~ T + Z /10y 4+ q)k=3/2p

k=y19/10
d+2

<yly+an 2z

for some § > 0. Also note that Lemma 24 yields P(Q, ,) < y(y +a)n~ 2 . This finishes the proof for ¢ > —1/2.
The case a < —1/2 follows by reversing the random walk, using prec1sely the same argument at the end of the
proof of (11) in [9]. O

C.2 A ballot upper bound involving moderate deviation

In this appendix, we revisit the recent work [20] and extract one-dimensional ballot upper bounds involving
moderate deviation. Consider a one-dimensional non-lattice random walk {5, },>1 with centered i.i.d. jumps and
finite moments of any order. The quantity of interest is

P+ S, €ly,y+1],z+ S, > 0forall 1 <k <n), (71)
where |z — y| > \/n. Applying the classical ballot theorem leads only to an upper bound of < xyn~3/2, which

does not account for the fact that the (conditioned) random walk is unlikely to travel a distance of |x — y| in time
n. The Brownian motion analogue of (71) was analyzed in Lemma 18 of [15], while we are unaware of general
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tight asymptotics for the random walk case. A notable exception is Theorem 1.2 of [20], which provided precise
asymptotics of the ballot probability (71) for 2 € [0,n'/27¢], y € [C1v/n, Cor/nlogn] for fixed constants Cy, Cy > 0.
On the contrary, we satisfy ourselves with asymptotic upper bounds, which allow for a wider range of the parameter
y. We first record below the result from [20] that we will employ.

Lemma 25. Fize € (0,1/2) and L > 0. There exists § > 0 such that uniformly for x € [0,n*/?~¢] and y > /n/L,
"2
Plx+S,€ly,y+1,2+S, >0 foralll <k <n)<an 175+ xyn_3/2e_%.

Proof. By (3.1) of Theorem 3.1 in [20] (and following the beginning of the proof of Theorem 1.2 therein), it holds
uniformly for « € [0,n'/?7¢] that

[P(;l;+5ne[y,y+1],:1:+Sn>0fora111<k<n)<<%n7n, (72)

1+e
t t4y)2
In ::/ ((14‘\—;;)6_6(:2) +n_5> dt

—€

where

for some large constant C' > 0 depending on the law of the jump and e. We have uniformly for y > v/n/L,

2
Jn €Kn=F+ Y

Vvn
Combined with (72) finishes the proof. O

Let us now consider a logarithmically tilted barrier. Applying the same arguments that derived Lemma 23 from
Lemma 24, and using Lemma 25 instead of Lemma 24, we arrive at the following result.

Lemma 26. Fiz ¢ € (0,1/2) and L,L' > 0. There exists 6 > 0 such that uniformly for x € [0,n'/>7¢] and
y=vn/L,
o — 8y

P(z+ S, € [y,y+1], x+ S, > —L'(logmin{k,n — k}) 4 for all 1 <k <n) < zn~ 17 + ayn=>/2e" |

Due to the term zn~'7¢, the bound in Lemma 26 cannot be tight for y > +/nlogn. While a general tight
bound seems reminiscent in the literature, the following weaker estimate suffices for our purpose.

Lemma 27. Fiz L' > 0. There exists § > 0 such that uniformly for x,y > 0,
P(z+ Sp € ly,y+ 1], + S, > —L'(logmin{k,n — k}); for all 1 <k <n) < pns(|lz —y|).
In particular, for x € [0,n*/2~¢] with € € (0,1/2) and y > /n,
P(z + Sy € [y,y + 1], 2+ Sy > —L'(logmin{k,n — k})4+ for all 1 <k <n) <P(|Sn] > |z — y|) < @ns(y)-
Proof. By a moderate deviation estimate (e.g., Theorem 3.7.1 of [14]), we have
Pz +Sn €y, y+1], 4+ S, > —L'(logmin{k,n — k}); for all 1 <k < n) <P(|Su] = |z —y|) < pns(|lz —yl)
for some ¢ > 0. O
Remark 9. By symmetry, the same statements of Lemmas 26 and 27 hold with the roles of x,y interchanged.

Moreover, the same results hold for 0 < z < n'/27¢ by a suitable scaling.

C.3 BRW conditioned on two descendants with large displacements separated at
the first step

In practice, when conditioning on the event %, and a fixed location at time ¢, — h, we would like to understand
the conditional law of the BRW in the period [t, — h,t, k], given the information that two trajectories separated
at time t; — h both reach the level x at time ¢, k. In this self-contained appendix, we consider a large number n
and g < 0, and recall from (30) that

Ing = {Elv,w € Vi, lea(v,w) = 0, ny n(n) = my, — g, Ny n(n) = m, — g}, neN, g<0.
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The general strategy to deal with an event of this type is to condition on the first generation and partition the
event into disjoint events where at least two of them have descendants with large maxima. When conditioned on
the first generation, the events of having large maxima will then be independent and hence can be decoupled.

In the following, for j € N, let P; denote the law of the tuple (71,...,n;) of 1.i.d. random variables with law &.
Throughout, assume (Al)—(A4).

Lemma 28. For g <0, it holds that P(7, ,) =< (|g| + 1)%e?®29.

Proof. We condition on the first generation and obtain
(oo}
P(Ig) =D 1 /]P’(fn,g | Vi = {vehi<e<ys M1 (1) = ) dP; (1, .. ).
j=2

We first prove the upper bound of P(.#, ;). By assumption (A4),
P(¢ > z) <« e~ (20, (73)

For a fixed j, there are < j2 possibilities of pairs (k, k'), 1 < k < k' < j so that descendants of vy, vy realize the
event .#, ;. By a union bound, we have

/ B(Sy | Vi = {0k} 1eness Dot (1) = ) B, (11, - -1 115)

<5 /]P’(Mn—l >my — g —m)P(My—1 >my, — g —n2) dP2(n1,72)

< F2E[min{(|g + €] + 1)e0+9) 1}]?
< 72(g) +1)2e29,

where we have used (73) and Lemma 4. By assumption (Al), we conclude that
P(Fng) < D_pi (gl + 1720 < (|g| +1)%,
j=2

as desired.
To show the lower bound of P(.%, ), suppose that p; > 0 for some j > 2 (valid since p > 1). Since the
probability that j i.i.d. samples of 7; are all positive is > 1, we have by (14) of Lemma 4,

/]P(fn,g | Vi = {oebicn<ss Moo (1) = m) dP;(n1, ..., ;) > (g + 1)%€>9,

as desired. O

Recall the defining barrier (33) for the ballot event &1 4. Let V,, , denote the set of particles v € V;, whose past
trajectory {ny.n(k)}1<k<n does not cross the barrier

~ k 4
Y(k):=Llogn — g+ M + c—(logmin{k,n — kP, 1<k<n.
2
Recall that ¢, 5(i) = el min(51)
Lemma 29. [t holds that for g <0,

n*2ons(lull) if Jlull > vnrlogn;

P(3v € Vg, Non(n) € By, — Ing) K -
( ngr Mo (1) (mn—g) | Fn.g) {(logn)zndz1 if ||ul] < +/nlogn.

Proof. We write

P(HU € Vg, nv,n(n) € B(mn—g,u)a jn,g)

P(Fv € Vags Mon(n) € B, —go) | Fnrg) = P(S,.,)
n,g
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The denominator is bounded from above by P(.%,,) > (|g| + 1)%¢**29 by Lemma 28, and hence it suffices to
establish an upper bound for the numerator. To this end, we condition on the law of the first generation, by first
conditioning on #V; and then the locations of particles belonging to the first generation, we have

P(Jv € Vg, Mo.n(n) € Bin,—g.u)> Fn.g)

= Zp] /P(HU S Vn,g7 nv,n(n) S B(mn—g,u)v fn,g | Vl = {Uk}lgkrgju nvk,l(l) = nk) de(nlu e 7"]’)'
j=2

To deal with the inner probability, we decompose into sub-events where the event .#, , is realized by descendants
of v, and vy (which we denote by J,’f;_,f,), 1 <k < k' <j, and decompose the count based on the ancestor at time
one. We obtain

]P)(HU S Vn,ga nv,n(n) S B(mnfg,u)7 jn,g | Vl = {'Uk}lgkréja ka,l(l) = nk)

J
< Z ZP(HU S Vn,ga vV > Vi, n'u,n(n) € B(mnfg,u)7 jk " ‘ Vl = {'Uk}1<k<]7 N 1 (1) = nk)'
1<k<k/<j i=1

We may then apply independence to bound the probability. In the case i = k,

P(3v € Vi g, v = vi, Non(n) € Bin,—gou)s f,ﬁ’;/ | Vi = {vehi<r<g Mo (1) = i)
< P(Mn_l > My — g — nk/)P(H’U S Vn—l,ga nv,n_l(n — 1) S B(mn—g,u)—'nk)
< mln{(|g + 77k’| + 1)602(g+nk/)7 1}P(37} € anl,g7 nv,nfl(n - 1) € B(mn—g,u)—nk)a

where we have used Lemma 4. Suppose that ||u|| < y/nlogn. By a change of measure argument and Lemma 23,
P(Fv € Viei,g, Mon—1(n —1) € B, —gu)—n,) < (logn)(logn — g)ec2(g+"’“)n_%. (75)

We therefore conclude that for ||u|| < /nlogn,

P(I € Vivg, v = i, Moin (1) € B, —gow)s T8 | Vi = {vehicrss Moy (1) = mk)
d—1

< (logn)2(|g| +1)602(9+77k) min{(|g+7lk" +1)602(9+nk')71}n*7.

The case ¢ = k' is similar. In the case i € {k, %'} and ||ul| < y/nlogn, by Lemma 4 and Lemma 23,

P(HU S Vn,97 vV > Vg, nv,n(n) S B(mnfg,u)a fyﬁ’gkl | Vl = {Uk}lgk<j7 nvk71(1) = nk)
< IP)(]\47171 >Mp — g — nk)]P(Mnfl > My — g — 771«)1?’(3@ € anl,ga nv,nfl(n - 1) € B(mn—g,u)—m)

d—1

< min{(|g + ne| + 1)6C2(g+nk)’ 1y min{(|lg + me | + 1)602(.(1-le)7 1}(logn)(logn — g)ecz(g-‘rm)n_T
< (logn)?(|g] + D) 190~ 5" min{(|g + mi| + 1)e ) 1 min{ (g + mp| + 1)er @m0, 1),

Combining the above, we have by (73) that for the case ||u|| < /nlogn,
P(Fv € Vg, Mon(n) € Bim,—gu)> Fnig)
< ij =5 (72(0gn) (9] + 1B [min{|g + £le*(), 1} Elee]
+ 57 (togn)(1g| + D)eE [min{lg + €le27+9,1)]°E[e"))
<~ T (logn)?(|g| + 1)%e%29 f:pjj? +n T (logn)?(lg| + 1)2e329 im‘?’

=2 =2

< n” T (logn)?(lg| + 1)%e>29,

where we use assumption (A1) in the last step. This proves (74) in the case ||ul| < v/nlogn.
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In the case ||u|| > v/nlogn, we need to replace (75) accordingly. Applying a change of measure as in the proof
of Lemma 14,
P(3v € Vio1,9s Non-1(n — 1) € B, —g,u)—ny)

< 0322 HIP(S,, 1 € B, gy -mes Sk < P(k) forall 1 <k <n—1)

<2 EIP(|S, 1y — (u — )| < 1)

< 0?2 g s([lu — i ).
We apply the bound ¢, s(||lu — Mx||) < ¢n,s(||ull /2) on the event || 7] < ||ul| /2, and apply the bound (75) on the
complement of this event which still occurs with probability < ¢, s(||ul| /2) by (73). More precisely, for the case
i =k, we use

P30 € Viug, v = iy Mun(n) € Bim,—g)s Zia | Vi = {okhicrsss Mo (1) = )

n®2e20t g, 5(|[ul /2) if |7kl < [[all /2;

< min + mr| + Dec2@tm) 1} x - R
g+l +1) ) (log m) (1o m — g)ea+mn=25 it |3, > ull /2.

This part of the sum is then controlled by
= . _d—1 c . c c
> 032 (™7 (log m)2(lgl + 1)e B [min{lg + €le T+, 11 E T gy, 1> pul 2}
j=2

+ n3/2€c2(9+7]k)%0n’6(@)]]4:[min{|g + §|€c2(g+£), 1}])
<0 5(|[ul) (gl +1)%e29,

where the § may vary from line to line. The rest of the argument follows analogously as the case ||u|| < y/nlogn. O

D A conditional local CLT (for general jumps)

In this appendix, we prove a more general version of Lemma 9, which deals with a general increment distribution
& that may not be spherically symmetric (see the discussion in Section 4). The result is indeed an application of
Petrov’s theorem [37] and a change of measure argument, while we include the details for completeness. Recall the
setting below (3) of the law &. If £ is spherically symmetric, we have ¢; = ¢; and co = coe;.

Define the set

B, (z;r) := {x+ch+y: y-ca=0, |yl < |s] gr}, r>0

and (for this appendix only)

~ d+2
ty = Aﬁ + % logz — (log x)%.
€1 2¢10,,1(¢1,0)
Lemma 9 then follows from the next result.'?

Lemma 30 (conditional local CLT). Fiz L,7 > 0. Uniformly for A(z) = O((logz)"),

d—1

IP’(x\(a:) +85; € Be, (z;7) | (A(z) + S; ) c2€[rcay-e; —7,7C2 €1 + 7“]) a2 .
Proof. Let A(X) = log ¢¢(A) = log E[e*¢] be the log-moment generating function of €. The measure Q defined by

@ . ,C2-x—A(c2)
p X =e (76)

satisfies that under Q, {&}ien are iid. with mean (c1,0) € R?. In other words, under Q, the random walk
{S,} :={S, — n(c1,0)} is centered.

13When applying the next result to prove Theorem 2, one picks 7 small enough (depending only on c3) such that 532 (z;7) C Byg.
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By assumption (A5), the law of £ under P is non-lattice. It follows by definition and triangle inequality that
the law of € (and hence of its projection & - c2) under Q is also non-lattice. By the local CLT,
]P’(()\(x) +8;) c2€[rca-e; — 770201 + 7‘])

= e?wA(”)_(’”el_A(x))'CQQ(()\(x) +8; ) co € [vcy-ep — 7,702 €1 + r])
= e;IA(CZ)*(melf)‘(z))'”Q(’gg - Coy — ((El(log x)2 — 7dj 2 logx)e; - co — A(x) ~02)’ < 1")
v 20,,1(¢1,0)

- etNT,A(cz)—(mel—A(m))'(:gx—% )
Similarly, using the multi-dimensional local CLT,

]P’()\(x) +87 € B, (x;r)) = eETA(CQ)f(ml*)‘(x))QQ()\(J:) +8; € B, (x;r))

- etNmA(cz)—(mel—)\(z))-czx—% )

This completes the proof. O
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