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1. Introduction and statement of results

We consider a base function ¢ : R — R that is periodic with period 1 and Lipschitz continuous. Our aim is to study
the function

o0
flt)=) amp(b™), tel0,1], (1.1)

m=0
where b € {2,3,...} and @ € (—1, 1). Then the series on the right-hand side converges absolutely and uniformly in
t € [0, 1], so that f is indeed a well defined continuous function. If ¢(t) = v sin(2wt)+ p cos(2t) for real constants v and
p, then f is a Weierstral function. If o(t) = min,cz |z — t| is the tent map, then f is a Takagi-van der Waerden function.
It was shown in Schied and Zhang (2020) that, under some mild conditions on ¢, the function f is of bounded variation

for |o| < 1/b, whereas for || > 1/b and p := — log, b it has nontrivial and linear pth variation along the sequence
T, ={kb™":k=0,...,b"}, nekN, (1.2)
of b-adic partitions of [0, 1]. That is, for all £ € (0, 1],
Ltb" | 0 ifqg>p,
(= lim 3 [f(Ck+ ™) = f(kb™)[" = Y £ ELIZI)  ifq=p, (13)
k=0 +o00 ifg < p.

* The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada through grant
RGPIN-2017-04054.
* Corresponding author.
E-mail addresses: xiyuehan@uwaterloo.ca (X. Han), aschied@uwaterloo.ca (A. Schied), zhenyuan.zhang@uwaterloo.ca (Z. Zhang).

https://doi.org/10.1016/j.spl.2020.108920
0167-7152/© 2020 Elsevier B.V. All rights reserved.



2 X. Han, A. Schied and Z. Zhang / Statistics and Probability Letters 168 (2021) 108920

Here, Z is a certain random variable, whose law is known in some special cases. For instance, if ¢ is the tent map and b
is even, then the law of «¢bZ is the infinite Bernoulli convolution with parameter 1/(|x|b) (see also Gantert, 1994; Schied,
2016; Mishura and Schied, 2019 for earlier results in this special setup). Clearly, the parameter p = —logy b can be
regarded as a measure for the “roughness” of the function f. As a matter of fact, it is well known that a typical sample
path t — By(t) of a fractional Brownian motion has linear pth variation (BH)EP) =t- IE[|BH(1)\p] for p=1/H.

Remark 1.1 (On the connection with pathwise Ité calculus). Our interest in the pth variation of fractal functions is motivated
by its connection to pathwise 1t calculus. For instance, if |o| = 1/ /b, we have p = 2 and the limit in (1.3) is just the
usual quadratic variation of the function f, taken along the partition sequence {T,},cn. It was observed by Follmer (1981)
that the existence of this limit is sufficient for the validity of It6’s formula with integrator f, and this is the key to a rich
theory of pathwise Itd calculus with applications to robust finance; see, e.g., Follmer and Schied (2013) for a discussion.
Recently, Cont and Perkowski (2019) extended Féllmer's Itd formula to functions with finite pth variation, which has led
to a substantial increase in the interest in corresponding “rough” trajectories with p > 2.

In this note, we study the case of critical roughness, « = —1/b or « = 1/b, in which p = 1. For this case, it was
shown in Schied and Zhang (2020) that (f)gq) =0forall g > 1andt € [0, 1]. This, however, does not imply that f is of
bounded variation. For instance, if ¢ is the tent map, b = 2, and ¢ = 1/2, then f is the classical Takagi function, which is
nowhere differentiable and hence cannot be of bounded variation; a very short proof of this fact was given by de Rham
(1957) and later rediscovered by Billingsley (1982). For the WeierstraR function, the proof of nowhere differentiability for
all @ € [1/b, 1) is more difficult. Starting from WeierstraR®’s original work, it attracted numerous authors until a definite
result was given by Hardy (1916).

It is therefore apparent that, in the critical case |«| = 1/b, power variation (f)@ is insufficient to capture the exact
degree of roughness of the function f. To give a precise result on the roughness of the function f in the critical case, we
take a strictly increasing function @ : [0, 1) — [0, o0) and investigate the limit

("
E = glglo @ (If((k+ 1)b™™) — f(kb™™)]),
k=0

which can be regarded as the Wiener-Young @-variation of f (see, e.g., Appell et al., 2014), restricted to the sequence of
b-adic partitions (1.2). Our main results will show that the correct choice for & is the function

X
P(x) = ——— forxe(0,1) and &(0):=0.
()=~ (0,1 (0)

We fix this function ¢ throughout the remainder of this paper. Our first result establishes the @-variation of f from (1.1)
for the class of Takagi-van der Waerden functions.

Theorem 1.2. Let ¢(t) = min,cy |z — t| be the tent map, b € {2,3,...}, and |«¢| = 1/b. Then the @-variation of the
Takagi-van der Waerden function f exists along {T,},ex. If b is even, then it is given by

2
;p:tn R t 0,1
e wlogh €lo.1l

If b is odd, then

e =t ‘/ 2(b + sgn(a)) el

(b —sgn(a))logh’

Our results will be consequences of suitable central limit theorems (CLTs). In the preceding theorem, the case of b
even will be settled by the standard CLT, whereas the case of b odd will require the use of a CLT for Markov chains.
For establishing the @-variation of the critical Weierstral8 functions, as stated in the following theorem, we rely on the
martingale CLT. A loosely related CLT for the classical Takagi function was proved by Gamkrelidze (1990).

Theorem 1.3. Suppose ¢(t) = vsin(2xt)+p cos(2mt), b € {2, 3, ...}, and || = 1/b. Then the ®@-variation of the Weierstrafs
function f exists along {Ty}new and is given by

w(v? 4 p?
(f)?:fz %, t €[0,1].

2. Proofs

We first consider only the @-variation (f )f’ for t = 1. The case t < 1 will be discussed at the end of this section,
simultaneously for both theorems. We fix b € {2,3,...} and @« € {—1/b, +1/b}. Following Schied and Zhang (2020),
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we let (2, #,P) be a probabillty space supporting an independent sequence Ul, U,, ... of random variables with a
uniform distribution on {0, 1, . — 1} and define the stochastic process R, := E U;b*='. Note that R, has a uniform
distribution on {0, ..., b™ — 1} Therefore for n € N such that all increments |f( (k+ l)b‘") f( kb‘”)| are less than 1,
b"—1
Vo= 30 @ (f(lk+ Db~ = fkb™)]) = BE[@ ([f((Ro + DB ) = f(Rab ™)) | (2.1)
k=0

To simplify the expectation on the right, let the nth truncation of f be given by f,(t) = ZE::]U a™p(b™t). The periodicity
of ¢ implies that

F((Ry + 1)b7") = f(Ryb™") = ful(Ry + 1)b™") — f(Rab™")

"3 sgn(aon €8 D ") = p(Rib ™)

= b "sgn(a pom

m=1

The periodicity of ¢ implies moreover that for m < n,

m
o(x+Rob ™ (x+ZUb‘ ) = g(x+ YU = gx+ Rub ™).
i=1

Therefore,
R Db™™) — @(R,b™™ R 1b™™) — p(R,b™™
son(ayr PR D™ —pRD™) (Rt DB — plRab ™)
b—m b—m
It follows that
V, = b"E[cb (b‘“ m|)] (2.2)
Lemma 2.1. Suppose that Zy, Z1, Z2, ... is a sequence of random variables with Zo = 0 and uniformly bounded increments

such that the laws of LHZ,, converge weakly to some normal distribution N(0, o%) with o2 > 0 and that the expression %]E[Zf]
is bounded in n. Then

n n 202
bE[@(b"|z)) | — —ogh

Proof. The fact that %E[Z,f] is bounded implies together with standard arguments that for every nondegenerate interval
I C [0, c0),

1 1 :
limE[ll —Z ]: / |z|e=2"/27) dz, @)
nfoo Ummien| o/n " V2ra? {|zl€l}

We have

- |Zx |
LG o T E——
( ‘ nl) n lOgb — lOg 1Z,] {1Zn|>0}
Let C be an almost sure uniform bound for |Zy,; — Z|. Hence, for all B8 € (0, logb) there exists np € N such that
nf < nlogb — log(Cn) for all n > ny. Hence,

Jnlogh —log|Z,| > \/nf forn > ng, (2.4)

and taking I := (0, co0) in (2.3) gives

2
limsupb”E[ (b~ |Z,.|) |zle™72/27") gz = 20°

ntoo \/27ror {lz|el} g

To get a lower bound, observe that for every £ > 0 and n > 1/&2,
nloghb —log|Z,| < vnlogh.

Hence, we get from (2.3) that

1 1 1
I S nl2e) 4 Z7nlze)

liﬂoionfb"IE[ (b2, )] lzle 2/ 4.

RV 2mo? log -/'|z|>£]

Sending ¢ | 0 and 8 1 logb gives the result. O
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Proof of Theorem 1.2 for t = 1. For b even, Schied and Zhang (2020, Proposition 3.2 (a)) state that Y, Y,,... is an
i.i.d. sequence of symmetric {—1, +1}-valued Bernoulli random variables. Therefore, (2.2), the classical CLT, and Lemma 2.1
give Vi, = /2/(z logb). If b is odd, then Schied and Zhang (2020, Proposition 3.2 (b)) states that the random variables
sgn(e)"Y,, form a time-homogeneous Markov chain on {—1, 0, +1} with initial distribution p; = (%2, 1, &=1) and

e . 2 b’ 2
transition matrix P, where
1 (b£1 0 bF1
Pp=—[b—1 2 b—1}).
b1 0 bt1

It follows that Y, Yo, ... also form a time-homogeneous Markov chain with initial distribution @, and transition matrix
P, for @ > 0 and P_ for o« < 0. Since 0 is a transient state, we can clearly consider only the restriction of the Markov
chain to its positive recurrent states, —1 and +1. Let P+ be the 2 x 2-matrix obtained from P by deleting the second row
and second column from P, and define ;11 = (1/2, 1/2). Then (1, is the unique stationary distribution for P.. Moreover,

Fn__1(1+(ib)-" 1—(imﬂj
:E__ .

2\1—(&b)™ 14 (L£b)™
For the state-constraint Markov chain Y1, Y,, ... with initial distribution fi; and transition matrix P, we thus have
var(Y;) = 1and
— — _ —n —n
cov(Vi, Vo) = Y. Pl Yar1)yiyars = (b) ™
Y Ynp1€{=1,+1}
Letting
o0
_ — b+1
o? :=var(Y;)+2 Y cov(Y,Y =
(Y1) +2) cov(Yy, Ynyr) e

n=1

the central limit theorem for Markov chains (see, e.g., Jones, 2004) implies that \% ZJ'::I Y, converges in law to N(0, o2).
Due to the stationarity of the Markov chain, we have moreover

1 n N2 1 n _ 2n—1 n o
E[(E ;Yk) ] HkZ:I:var(Yk)+ HZ Z cov(Yy, Yy)

k=1 £=k+1

2l & 2 b""4+bn+b—n
14+ = (#b)t<142. T 7

which is uniformly bounded in n. Therefore, Lemma 2.1 and (2.2) give V, — +/2(b £ 1)/(w(bF 1)logh). O

Now we prepare for the proof of Theorem 1.3 for t = 1. Let %, = {@, 2} and %, := o(Uy, ..., U,) for n € N. Then
each Y, is .#,-measurable. Since Uy, ..., U, can be recovered from R,, we have .%#, = o(R,)) for n > 1. We define Z, := 0
and Z, ==Y, Yy forneN.

Lemma 2.2. If p(t) = vsin(2nt) 4 p cos(2mt), then {Z,}new, is a martingale with respect to {#,}nen,-

Proof. We must show that E[Y,|R,_,] = 0 P-a.s. for n > 1. To this end, we use that R, = R,_; + U,b" !, where R, := 0
and U, is independent of R,_;. Therefore,

mu+um*1+nrﬂ—¢aw+mwﬂmﬂq

EHHRF1=r]=($MaWE[

b—n
n b1
:E@%ELEZ@GP+UV"+WM—wUF“+M®) (25)
k=0

If n = 1, then r must be zero, and the sum in (2.5) is a telescopic sum with value ¢(1) — ¢(0) = 0. Now consider the case
n > 2. Then, for all x € R, i = +/—1, and %Re denoting the real part of a complex number,

b1 b-1 _ g2mibfb _ q

Z @(x + k/b) = me((p —iv) Z Ele(x+k/b)) _ m((p — iv)edi . #) —o
k=0 k=0 e mifb 1
Therefore, the sum in (2.5) vanishes. O

Lemma 2.3. With 8 denoting the Dirac measure in x € R and A denoting the Lebesgue measure on [0, 1], we have P-az,
3 2kt Opkg, — A weakly as n 1 oo,
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Proof. Without loss of generality, we can extend the sequence {U;};cy to a two-sided sequence {U},EZ of i.i.d. random
variables with a uniform distribution on {0, ..., b—1}. Then we define X, := Z) 1 Unprib™ = Z o Un_jbU*V forn e Z.
Each X,, is uniformly distributed on [0, 1], i.e., has law A. Moreover, in comparison with X, the random variable X;,;, is
obtained by shifting the sequence {U;}icz one step to the right. It is well-known that the dynamical system corresponding
to such a two-sided Bernoulli shift is mixing and hence ergodic (for a proof, see, e.g., Example 20.26 in Klenke, 2014).

By Birkhoff's ergodic theorem, we thus have % 22:1 f(Xe) = fol f dA P-ass. for each bounded Borel-measurable function

on [0, 1]. Since |b™R, — X,| < b™™, we hence obtain % ZL] f(b7*R) — fol f dA P-a.s. for each (uniformly) continuous
function on [0, 1]. Since C[0, 1] is separable, the result follows. O

Proof of Theorem 1.3 for t = 1. Let (Z), == Z -1 E[Y,?Iﬁk 1] be the predictable quadratic variation of the martingale
{Zn}nen,. We define 1,:’[,,()() = (p(x+b™™) — p(x ))/b " Then ¥(x) — ¢'(x) uniformly in x. By arguing as in (2.5), we see

that ]E[Yk2|5¢“k_1] = b z— (wk( b~*Ry_1 + E/b)) . We therefore conclude from Lemma 2.3 that
b—1 n

1 1
_@n=1 3

£=0 k=1

1
(Vb ~™*Ri1 + £/b))* —> f (¢/(1)* dt = 2m%(1? + p?) =: 0.
0

Analogously, one sees easily that s2 := E[(Z),] satisfies %sﬁ — o2, Since the increments Y are uniformly bounded, the
Lindeberg condition,

1 n
. Z:E[Y,fl"%zm} |#-1] — 0  P-as.foralle >0,

is clearly satisfied. Therefore, the martingale central limit theorem in the form of Durrett (2005, (7.4) in Chapter 7) yields

that the laws of ﬁzn converge weakly to N(0, o2). Lemma 2.1 hence gives

m(v? +p?)

|72 2
n loghb

Finally, we show how the preceding results can be extended to the case 0 < t < 1. Writing Z, for ZE:] Yy, the
@-variation over the interval [0, t] is equal to

b1

Vi = 30 @ (f U+ 1) = Fkb™)[) 1,0, (kb ™) = bE[ @ ([f(Ry + Db ™) = FRab ™)1,y 1y, |

k=0

n
i A
— k" n
_bE[(p(b ZY’"D (b="Rn <H] E[ nlogh — log |Z,] “Z">u)1“'_"“”(”]

Let § > 0 be given and pick m € N such that b™™ < §. Clearly, {b™"R; <t} C {b™"Ryy,n < t}, where Ry := Ry — Rp_ip =
Zk —nemt1 Ugb*~1. In addition, we argue as in the | proof of Lemma 2.1 and take 8 € (0, logh) and ny € N such that
nB < nlogh — log(Cn) for all n > ng and (2.4) holds. Therefore, for n > m v ny.

(
1 1 “
Vie = J_ [lzn‘ b= "Rm,nsr}] = \/T]E[lzn_m|1[b7nﬂm,n5!}] + ﬁEH Z Y"”'

k=n—m+1
Clearly, the rightmost term converges to zero as n 1 co. Moreover, Z,_r; and R , are independent, and so

202 202 202
lim sup Vp; < 2% lim SUpP[b™"Rpn <] < 2% lim supP[b™"R, < t+ 8] = i(t + 8),
ntoo 7[,8 nteo ”JB ntoc Tfﬁ

where the second inequality follows from the fact that bRy, » = b™"R, — 8 for n > m. Sending 8 1 logb and § | 0 gives
the desired upper bound.

To get a corresponding lower bound, we choose § > 0 and m as in the upper bound. In addition, we choose ¢ > 0. For
n > mVv 1/&% we then get as in the proof of Lemma 2.1,

V., >E 1zl 1 1zl 1
’ \/n logh llflzmm (b~ "Rn <t} \/nlog Hf|2n\>a} (b~ ""Rm,n=t—4}

Now let C be a uniform upper bound for |Yy| and choose n; such that mC < e,/n;. Then, forn > n; v mv 1/,

1Za-m| 1 ” - H
Vo > E| ——21 1 ———FE Yil |-
= |:\/n10gb (I 7 en-ml=26) " Ema==3) | /nlogh k:§1+ k

1

Again, the second expectation on the right converges to zero. Using as before the independence of Z,_, and R, , now
easily gives the desired lower bound. This concludes the proof of Theorems 1.2 and 1.3 for0 <t < 1.
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