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Abstract

Given a collection of multidimensional pairs {(Xi, Yi) : 1 ⩽ i ⩽ n}, we study the problem
of projecting the associated suitably smoothed empirical measure onto the space of martingale
couplings (i.e. distributions satisfying E[Y |X] = X) using the adapted Wasserstein distance.
We call the resulting distance the smoothed empirical martingale projection distance (SE-MPD),
for which we obtain an explicit characterization. We also show that the space of martingale
couplings remains invariant under the smoothing operation. We study the asymptotic limit of
the SE-MPD, which converges at a parametric rate as the sample size increases if the pairs are
either i.i.d. or satisfy appropriate mixing assumptions. Additional finite-sample results are also
investigated. Using these results, we introduce a novel consistent martingale coupling hypothesis
test, which we apply to test the existence of arbitrage opportunities in recently introduced neural
network-based generative models for asset pricing calibration.
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1 Introduction

Consider a collection {(Xi, Yi) : 1 ⩽ i ⩽ n} of random pairs with values in Rd × Rd, d ⩾ 1. We
denote the associated empirical measure of this sample by Pn. The fundamental goal of this paper
is to study the following question:

How far is Pn from the set of laws Q law∼ (X,Y ) that satisfy the martingale condition
E[Y |X] = X?

It is natural to formulate this question as a projection problem. In order to do this we first
need to overcome a series of modeling challenges, which we describe in the paragraphs below. Once
these are addressed, we give a precise formulation of the projection problem and study it rigorously,
including an asymptotic analysis as n increases. Both the modeling and the technical methodology
constitute the first portion of the main contributions of this paper. The second portion is driven by
applications to statistical learning. In fact, the above question is of fundamental importance from
an applied standpoint, because it forms the basis of a new consistent statistical test for martingale
pairs. We apply this test in order to verify the no-arbitrage condition in asset pricing models and
to test the Markov property.

The first modeling issue that arises is the choice of a projection distance. A natural choice to
measure the distance between two distributions is the Wasserstein distance, which in our context is
given by

Wγ(P,Q)γ = inf E[∥X −X ′∥γ2 + ∥Y − Y ′∥γ2 ]. (1)

Here γ ⩾ 1, P,Q are two probability measures on Rd×Rd, ∥·∥2 is the Euclidean norm on Rd and the

infimum is taken over joint distributions of (X,X ′, Y, Y ′) with (X,Y )
law∼ P and (X ′, Y ′)

law∼ Q. The
Wasserstein distance has gained popularity in recent years because of its versatility in a wide range
of machine learning tasks; we refer to the monograph [34] and the references therein for an overview.
Such versatility may be aided by the fact that the Wasserstein distance embeds Rd×Rd and metrizes
the weak convergence topology, see e.g. [49]. In order to focus the discussion of our contributions
in the introduction on the main conceptual challenges, we implicitly assume that γ = 1 and do
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not delve into the integrability assumptions imposed. We will be precise about these important
considerations in the statement of our results and the discussion section at the end of this paper.

A key problem that arises when considering the Wasserstein distance is that the conditional
expectation is not a continuous function in the weak topology. That is the case even in the setting
of simple examples going back to [48], see Section 4.1. For instance, if X = 0 and P(Y = 1) =
P(Y = −1) = 1/2, then (X,Y ) forms a martingale pair under P since E[Y |X] = X = 0 under P.
However, if Q(X = ε, Y = 1) = Q(X = −ε, Y = −1) = 1/2, then |E[Y |X]| = 1 under Q even
though the Wasserstein distance between Q and P is less than ε. In particular, it is possible to
approximate models that describe martingale pairs by a sequence of probability measures for which
the martingale property fails to hold by a strictly positive gap uniformly along the sequence. For
this reason, we consider an enhancement to the Wasserstein distance which addresses these types of
issues.

This enhancement is called the adapted Wasserstein distance AWγ and has been studied precisely
to deal with situations of this type. Instead of considering all joint distributions of (X,X ′, Y, Y ′)
preserving the marginal laws P,Q in (1), AWγ only considers those, for which additionally the prob-
ability distribution Law(Y, Y ′|X,X) on Rd × Rd has marginals Law(Y |X) and Law(Y ′|X ′); joint
distributions of this type are called adapted or bi-causal (see Definition 1 below). We refer to [5]
for a well-written introduction and summary of contributions to the theory of adapted distances,
with historical references and comparisons; an incomplete list is given by [3, 27, 39, 26, 14, 31] and
[35, 36, 5, 1, 6, 48]. In particular, under the adapted Wasserstein distance, martingale pairs can
only be approximated by probability measures that are close to martingale couplings themselves.
As a consequence, the discontinuity issue brought up earlier cannot occur. In fact, the adapted
Wasserstein distance induces the coarsest topology that addresses this discontinuity, see [6]. This
motivates considering the projection distance to the space of martingale pairs using the adapted
distance. However, computing this distance is a highly non-trivial task because the bi-causal con-
straints mentioned above are defined in terms of infinitely many conditional distribution constraints,
and the space of martingale pairs is also defined in terms of infinitely many constraints. One of the
main contributions of this work is to provide a closed-form expression for this projection distance in
great generality.

The next modeling issue that we consider is the fact that the empirical measure Pn will typically
appear far from being a martingale pair, simply because it encodes an empirical sample – note
that Y given X under Pn is almost surely deterministic if the samples are drawn i.i.d. from a
continuous distribution P0. This issue, as we shall show, is resolved by introducing a smoothing
technique. In particular, we consider the law of (X+ ξ, Y + ξ), where ξ has a suitable density and is
independent of (X,Y ). We identify a family of densities for ξ that does not change the nature of the
problem. Precisely, we show a result of independent interest: if the characteristic function (i.e. the
Fourier transform) of ξ has no zeros in Rd (e.g. if ξ is standard Gaussian) and all random variables
involved have finite variance, then (X,Y ) forms a martingale pair if and only if (X + ξ, Y + ξ)
forms a martingale pair. Therefore, by projecting a smoothed version of Pn using AWγ , we do not
fundamentally change the nature of the estimation task.

Once these modeling issues have been addressed, we turn to the study of a precise mathematical
formulation of our problem based on the smoothed empirical martingale projection distance (SE-
MPD): we minimize the adapted Wasserstein distance between the smoothed empirical measure and
any martingale pair. We then answer the following technical questions:

• What is the rate of convergence of the SE-MPD if the pairs {(Xi, Yi) : 1 ⩽ i ⩽ n} are
i.i.d. samples from a distribution P0 or satisfy some mixing conditions? Does it converge at a
parametric rate?

• Can we compute the asymptotic statistics?

• Can we use this projection approach to develop a hypothesis test for martingale pairs? How
can we study the power of this projection test?
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In this paper, we provide affirmative answers to all of these questions under suitable integrability
conditions. In particular, in Theorem 5 (and Theorem 4 for the mixing case), we show that the SE-
MPD converges at the parametric rate O(n−1/2). Moreover, we characterize the asymptotic limit
distribution in terms of the integral of a powered norm of an Rd-valued Gaussian random field.

As expected in results that involve kernel smoothing, the asymptotic distribution of the SE-MPD
depends on the choice of the kernel’s bandwidth σ. As we noticed earlier, the empirical distribution
Pn is far from being a martingale pair if σ = 0, so it is interesting to ponder the role of the bandwidth
parameter. In this paper, we give at least one insight into this issue and consider the asymptotic
distribution of the SE-MPD for the case σ → ∞. Intuitively, one would expect that the distribution
should degenerate to zero, as the smoothing procedure adds a “big (constant) martingale” (ξ, ξ) to
the pair (X,Y ). Somewhat surprisingly, we show that this is not the case if P0(X = Y ) < 1. In
other words, the smoothing effect does not seem to artificially hide that Pn appears to be within
O(n−1/2) distance from the space of martingale pairs. On the contrary, it turns out that the SE-
MPD offers a natural way to characterize the non-martingality of a law P0. If ξ is Gaussian for
example, we can characterize the martingale property in terms of polynomial test functions; that
is, E[(E[Y |X] −X)m(X)] = 0 for all polynomials m. If this expectation does not vanish for k but
it vanishes for j < k, this informs the specific choice n1/(2(k+1)) ≪ σ ≪ n1/(2k) of the bandwidth
parameter, for which the SE-MPD blows up as n increases. Conversely, if only Pn is observed, this
phenomenon suggests a natural way for choosing σ in order to maximize the power of the test: we
select the bandwidth that maximizes the SE-MPD, see Section 2.3.1. A more nuanced question, of
course, involves the role of σ and even the choice of the smoothing kernel for a fixed sample size n.
While these are interesting questions and we discuss initial results in this direction in Section 3.2,
we leave a complete investigation on these issues for future research.

Our asymptotic statistics of the SE-MPD can be used for non-parametric hypothesis testing
of the martingale pair property. This property is related to (although different from) martingale
testing, where one often considers a sequence of martingales. We refer to Section 2.3 for a more
detailed discussion of this issue. For now let us simply note, that there are various methodologies
and approaches to test the martingale property in different settings. For instance, [37] developed
a consistent martingale test for a one-dimensional martingale difference sequence. The test in [37]
could be applied to test martingale pairs, but it is not consistent in multiple dimensions (namely, it
may be possible to not reject a false null hypothesis of martingale pairs as sample size increases).
The work of [17] also developed a martingale difference test for high dimensional martingales which
could be applied to martingale pairs as well, but it is also not a consistent test. On the contrary,
the test that we propose is consistent for martingale pairs under assumptions complementary to
[37] and [17]. These assumptions are motivated by applications described in our empirical Section
5 in connection with, for example, policy evaluation in reinforcement learning, testing the Markov
property, and testing the no-arbitrage hypothesis in generative models for financial markets. In
Section 5 we also perform a power analysis of our proposed test and carry out extensive numerical
experiments to confirm our findings empirically.

We conclude this section with a short literature review. Convergence rates for W(Pn,P0) under
various assumptions on the sample have been extensively studied in the last years, see e.g. [19, 50]
and the references therein. The bottom line is that the Wasserstein distance exhibits the curse
of dimensionality, i.e. typically Wγ(Pn,P0)

γ ≈ n−1/d for high dimensions. Similar results were
established in [4, 2, 23] for the adapted Wasserstein distance. In consequence, a direct bound for the
empirical MPD using results of [4, 2, 23] could be obtained. This approach would use the triangle
inequality and the fact that the bounds are relatively insensitive to P0 under suitable regularity.
Further, this would only yield rates of order O(n−1/(2d))—showing that our O(n−1/2)-rates are a
big improvement of currently known, directly applicable, techniques.

The idea of projecting the empirical measure Pn onto a linear manifold using Wasserstein geo-
metry has been explored in various settings in the literature. In our case, the manifold is defined
by the martingale constraint, which in particular consists of infinitely many linear constraints. The
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work of [44] considers the case in which P0 is countably supported and the linear manifold has finitely
many constraints. Independently, motivated by problems in distributionally robust optimization and
optimal regularization in a class of machine learning estimators (such as square root Lasso among
others), [15] investigates generally supported P0 (under suitable moment constraints) and finitely
many linear constraints. The paper [42] considers the use of optimal transport projections in the
Wasserstein geometry for testing algorithmic fairness; this is an interesting application setting that
may benefit from the analysis that we provide in this paper.

We emphasize that in all of these settings, the linear manifold onto which one projects is defined
by finitely many constraints and involves the Wasserstein distance directly. In contrast, our pro-
jection problem involves a continuum of constraints both due to the martingale property and the
bi-causal restrictions implied in the definition of the adapted Wasserstein distance. The only excep-
tion to the finitely many constraints setting is the work of [41], which studies a class of infinitely many
linear constraints (again in the standard Wasserstein setting without causal constraints). However,
this reference assumes that the support of the underlying distributions is compact, and it does not
obtain the exact asymptotic distribution of the projection statistics.

Lastly let us mention that AWγ-projections onto the set of martingale measures with fixed
marginals are by now classical tools for the so-called martingale optimal transport (MOT) problems,
i.e. optimal transport problems with a martingale constraint and marginal constraints, see [10, 20,
13]. In particular, the series of works [7, 52, 11, 12, 30] uses AWγ-projection arguments to show
stability of the MOT problem for d = 1. Probably most related to our closed-form expression for
the MPD is [52, Proposition 2.4], which gives a similar result for AW1-projections onto the space of
martingales with fixed marginals. However, next to the additional marginal constraints in the MOT
problem (which we do not impose in our work), the scope of these papers differs from ours: they
solely offer probabilistic arguments; no statistics are investigated.

1.1 Outline

The rest of the paper is organized as follows. After defining various notations that we will use
throughout the paper, we proceed give an overview of our main contributions in Section 2. They
consist of three parts:

• Section 2.1, in which we introduce the projection distance to the space of martingale pairs and
compute this projection distance in closed form;

• Section 2.2, in which we present our results on asymptotic statistics of the martingale projection
under i.i.d. assumptions (and fixed dimensions) as well as suitable mixing conditions.

• Section 2.3, in which we discuss the application to the hypothesis testing problem for martingale
pairs (we also refer to these as martingale couplings) and present a brief study on the impact
of σ for the power of our martingale hypothesis test.

In Section 3, we discuss a few interesting questions arising from our main results and present
preliminary results to stimulate appetite for future research. In Section 4, we walk through the
detailed technical developments of the theoretical results presented in Sections 2 and 3. Finally,
in Section 5, we provide various experimental studies with respect to the power analysis of the
martingale pair test as well as its applications. In the appendices, we discuss further applications,
as well as deferred plots and algorithms.

1.2 Notation

Let P0 be the distribution from which the data is drawn, and let P denote a generic probability
measure. We denote the probability density and the probability measure of a smoothing random
variable ξ (introduced below) by fξ and Pξ respectively. Later in this paper, we will often make the
specific choices (4) and (5).
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We write for δx the Dirac measure at x; X
law∼ P if the random variable X has distribution P;

X
law
= Y if X,Y have the same distribution;

d⇒ for weak convergence. We also introduce the notation
P ⊗ Q for the independent/product coupling of two probability measures P and Q. The norm ∥·∥2
denotes the Euclidean norm in Rd, which should not be confused with ∥X∥p = E[∥X∥p2]1/p for a
random variable (or measurable function) X and p > 0. We write ⟨·, ·⟩ for the scalar product on
Rd × Rd.

Throughout we fix a (standard) probability space (Ω,F , µ), on which all random variables are
defined. If not specified otherwise, we take the expectation E[·] with respect to µ. For an Euclidean
space X we denote by P(X ) the set of probability measures on X .

2 Main contributions

As described in the Introduction, our main contributions are the derivation of an appropriate
projection distance between any distribution for the pair (X,Y ) and the space of martingale pairs,
its asymptotic statistics, and the investigation of a consistent hypothesis test for the martingale pair
property. We discuss the main results and provide a detailed technical development later in Section
4.

2.1 The empirical martingale projection distance

In this subsection, we study the martingale projection distance (MPD) (see Definition 3 below)
and derive a closed-form expression for it. We then define the smoothed empirical MPD (SE-MPD),
which will be used in our martingale pair test.

2.1.1 Introducing the martingale projection distance

Given P,Q ∈ P(Rd × Rd) and γ ⩾ 1, we define Wγ via

Wγ(P,Q)γ := inf
{
E
[
∥Y − Y ′∥γ2 + ∥X −X ′∥γ2

]
: π ∈ P((Rd)4), (X,Y,X ′, Y ′)

law∼ π,

(X,Y )
law∼ P, (X ′, Y ′)

law∼ Q
}
.

As briefly discussed in the Introduction, this distance is not well suited to distinguish martingale
laws from non-martingale laws (see Example 2 below). While the processes are adapted to their
natural filtration, the couplings π in the definition of Wγ need not be. This motivates the following
definition:

Definition 1 (see e.g. Lemma 2.2 of [8]). The probability measure π ∼ (X,Y,X ′, Y ′) is a bi-causal
coupling of the probability measures P and Q if

• π is a coupling of P and Q, i.e. (X,Y )
law∼ P, (X ′, Y ′)

law∼ Q,

• Law(Y |X,X ′) = Law(Y |X) (causality from P to Q),

• Law(Y ′|X,X ′) = Law(Y ′|X ′) (causality from Q to P).

Definition 2. For two probability measures P,Q on Rd × Rd, we define the adapted, nested or
bi-causal Wasserstein distance1 AWγ as

AWγ(P,Q)γ := inf
{
E
[
∥Y − Y ′∥γ2 + ∥X −X ′∥γ2

]
: π ∈ P((Rd)4), (X,Y,X ′, Y ′)

law∼ π,

π is a bi-causal coupling of P and Q
}
.

1These terms are used interchangeably in the literature.
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We will see in Example 3 below that applying the adapted Wasserstein distance AWγ solves the
problem mentioned in the introduction, that the conditional expectation is not a continuous function
in the weak topology. We can now define the central object of this paper.

Definition 3. Given a probability measure P and γ ⩾ 1, we define themartingale projection distance
of P with exponent γ as

MPD(P, γ) := inf{AWγ(P,Q)γ : E[Y |X] = X for (X,Y )
law∼ Q}. (2)

In particular, we find the following explicit characterization of the MPD:

Theorem 1 (Computing the martingale projection distance). Let (X,Y )
law∼ P and suppose that

(X,Y ) ∈ Lγ , i.e., E[∥(X,Y )∥γ2 ] <∞. Then

MPD(P, γ) = 21−γE [∥X − E[Y |X]∥γ2 ] . (3)

We refer to Example 4 for an explicit calculation of the MPD using Theorem 1, which also
emphasizes that the causality constraint is essential.

2.1.2 The smoothed empirical martingale projection distance (SE-MPD)

Consider a sequence of samples {(Xi, Yi) : i ∈ N}. Having found a general closed-form expression
for MPD(P, γ) in Theorem 1 for a general P ∈ P(Rd × Rd), it is natural to look for a martingale
pair test from the plugin estimator MPD(Pn, γ), where

Pn :=
1

n

n∑
i=1

δ(Xi,Yi)

is the empirical measure associated to {(Xi, Yi) : 1 ⩽ i ⩽ n} . However, if the samples are drawn
i.i.d. samples from an atomless distribution P0 with EP0 [∥(X,Y )∥γ2 ] < ∞, then we obtain from the
strong law of large numbers, that µ-a.s.

lim
n→∞

MPD(Pn, γ) = lim
n→∞

21−γ

n

n∑
i=1

∥Xi − Yi∥γ2 = 21−γEP0
[∥X − Y ∥γ2 ],

which is strictly greater than zero in general, even if P0 is a martingale law. In particular, MPD(Pn, γ)
is not a consistent estimator of MPD(P0, γ). To overcome this difficulty, we apply the following
smoothing technique.

Definition 4. Fix a law Pξ of the random variable ξ. For any P ∈ P(Rd × Rd), we define the
smoothed law P∗ξ as

P∗ξ := Law((X + ξ, Y + ξ)), (X,Y, ξ)
law∼ P⊗ Pξ.

We define the smoothed MPD as

MPD∗ξ(P, γ) := inf{AWγ(P∗ξ,Q)γ : E[Y |X] = X for (X,Y )
law∼ Q}.

In other words, the smoothed MPD is the MPD (2) applied to the smoothed law P∗ξ. At this

point it might not be obvious to the reader, how the martingale property of (X,Y )
law∼ P is affected

by the smoothing via Pξ as stated in Definition 4. In other words: for which Pξ do we have

MPD∗ξ(P, γ) = 0 ⇐⇒ MPD(P, γ) = 0?

This motivates the following definition:
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Definition 5. We say that the law Pξ is martingality-preserving if the following holds: for any law

P on Rd × Rd and (X,Y, ξ)
law∼ P⊗ Pξ,

(X,Y ) is a martingale ⇐⇒ (X + ξ, Y + ξ) is a martingale.

It turns out that not every law Pξ is martingality-preserving (see Example 5). Nevertheless,
under mild assumptions on Pξ, the martingale property is actually invariant under smoothing.

Proposition 1. Assume

(X,Y, ξ)
law∼ P⊗ Pξ,

E[∥(X,Y )∥2] < ∞, and E[∥ξ∥2] < ∞. Assume furthermore that Pξ has a density fξ and that the
characteristic function t 7→ E[ei⟨t,ξ⟩] has no real zero. Then Pξ is martingality-preserving.

There are many smoothing measures Pξ that satisfy the assumptions of Proposition 1. For
instance:

Example 1. The assumptions of Proposition 1 are satisfied for the density

fξ,ρ(x) = Cρ(∥x∥2 + 1)−ρ, (4)

where ρ > d+ 1 and Cρ =
∫
(∥x∥2 + 1)−ρ dx.

We refer to Section 4.1 for more examples of martingality-preserving laws, such as infinitely
divisible distributions (Example 6) and the Student’s t distribution (Example 7). For the rest of the
paper, we will mostly work with (4) for simplicity. We expect that a similar analysis works for the
Student’s t-distribution as well since it exhibits a similar tail behavior.

Recall that our aim is to find an estimator of MPD(P0, γ) given i.i.d. samples {(Xn, Yn)}n∈N
drawn from a probability measure P0. While the plugin estimator MPD(Pn, γ) was unsuitable, we
instead consider the following:

Definition 6. We call MPD∗ξ(Pn, γ) the smoothed empirical martingale projection distance (SE-
MPD) of Pn with exponent γ and smoothing kernel ξ.

In other words, instead of considering the raw empirical measure Pn, we take its smoothed
counterpart P∗ξ

n , which is obtained by a convolution of the density Pξ with the sum of Dirac measures.
This is a classical procedure in statistics. In fact, a similar idea was used in [23] to construct an
empirical measure that converges to P0 in AWγ . Furthermore, Proposition 1 states that there
is no information about the martingale property lost when using the SE-MPD for estimation of
MPD(P, γ). We emphasize that Pξ is chosen by the statistician.

We will show in the following that MPD∗ξ(Pn, γ) is a consistent estimator of MPD(P0, γ). In
fact, under mild assumptions, MPD∗ξ(Pn, γ) has a parametric rate. To the best of our knowledge,
this is the first martingale pair test statistic, that breaks the curse of dimensionality.

2.2 Asymptotic distribution of the SE-MPD

We suppose throughout this section that P0 is a martingale measure. Our main findings can be
summarized as follows:

Under suitable conditions on P0 with regard to integrability and weak dependence,√
nMPD∗ξ(Pn, γ) converges weakly to some explicit nontrivial random variable.

We now summarize the main results that provide rigorous support for this message.
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• The simplest result of such form is Proposition 4 below, where a wide family of smoothing
kernels are allowed. However, it is restricted to the i.i.d. case with γ = 1, and the moment
conditions are not optimal. The proof employs classical results on empirical processes.

• The more interesting Theorem 2 allows for a general choice of γ ⩾ 1 and less stringent mo-
ment assumptions in the i.i.d. case. On the other hand, we will restrict to a special family
of smoothing kernels that are heavy-tailed. Our proof builds on finite-sample estimates of
empirical processes.

• When the data are not i.i.d. but sufficiently mixing, Theorem 4 provides the desired convergence
given sufficiently many moments in the case γ = 1, with the same class of smoothing kernels
as in Theorem 2.

2.2.1 The i.i.d. case

Our main result of this subsection is the following:

Theorem 2. Let γ ⩾ 1 and for ρ > γ+d, consider the density fξ from (4). There exists C(ρ, d, γ) >
0 such that if the Rd × Rd-valued martingale coupling (X,Y ) ∈ LC(ρ,d,γ), then fξ is a martingality-
preserving law and we have the convergence in distribution

nγ/2MPD∗ξ(Pn, γ)
d⇒ 21−γ

∫
Rd

∥Gx∥γ2
E[fξ(x−X)]γ−1

dx, n→ ∞,

where {Gx} is a centered Rd-valued Gaussian random field with covariance

E[GxG
⊤
y ] = E[(Y −X)fξ(x−X)fξ(y −X)(Y −X)⊤], x, y ∈ Rd.

In particular, the sequence {nγ/2MPD∗ξ(Pn, γ)}n∈N is tight.

Theorem 2 is a simplified version of its general version, Theorem 5, which can be found in
Section 4. Theorem 2 focuses on the densities from (4), while a standard scaling argument shows
that densities of the form

fξ,σ(x) = fξ,ρ,σ(x) = σ−dCρ

(
∥x∥2
σ

+ 1

)−ρ

(5)

also work. That is, fξ,ρ,σ is the density of σξ, where ξ has density fξ,ρ. In particular, fξ,ρ,1 = fξ,ρ.
A natural question is how the limit distribution of the rescaled MPD shown above depends on

fξ and σ. This question is in general quite hard to answer, and we focus on the most fundamental
yet important case γ = 1, where (X,Y ) ∈ L2(d+1)+δ for some δ > 0 (we refer to Section 2.3 for
discussions on the choice of σ and Section 3.2 for the case of general fξ). In the following, we fix
ρ > d+ 1. Recall (5), which implies that

fξ,σ(x) ≍

{
σ−d for ∥x∥2 ⩽ σ,

σρ−dfξ(x) for ∥x∥2 > σ,
(6)

where the constants may depend on the dimension d. Taking γ = 1, Theorem 2 yields that

√
nMPD∗ξ(Pn, 1)

d⇒
∫

∥Gx∥2 dx. (7)

where {Gx} is a centered Gaussian process (depending on σ) with covariance

E[GxG
⊤
y ] = E[(Y −X)fξ,σ(x−X)fξ,σ(y −X)(Y −X)⊤], x, y ∈ Rd. (8)
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Theorem 3 (Expectation of the limit distribution). Suppose that the martingale coupling (X,Y ) is
non-degenerate, i.e., P0(X = Y ) < 1. Then

E
[∫

∥Gx∥2 dx

]
≍ 1 as σ → ∞.

Remark 1. So far in our analysis, fξ lies in a fixed parametric class (5) with quite heavy tails.
However, for γ = 1, restrictions in choosing fξ can be relaxed. For example, we will see in Section
3.2 that taking fξ the Gaussian density still works, provided that the pair (X,Y ) is sufficiently
integrable.

2.2.2 Stationary α-mixing sequences: asymptotic distribution for γ = 1

For two σ-algebras A,B, we define their α-mixing coefficient

α(A,B) := sup
A∈A,B∈B

|P(A ∩B)− P(A)P(B)|.

Given a stationary sequence {Xi}i∈N, we say it is α-mixing with coefficients {αn}n∈N if
supi∈N α(σ(X1, . . . , Xi), σ(Xi+n, . . . )) ⩽ αn for any n ∈ N; see [38]. For λ > 2 we define the
quantity

Aα,λ :=

√∫ 1

0

α−1(u)u−2/λdu ∈ R ∪ {∞},

where α−1(u) = sup{n ∈ N : αn ⩾ u}. For example, we have Aα,λ < ∞ if there exists κ > 1 such
that κ−1 + 2λ−1 < 1 and αn = O(n−κ).

We consider the most fundamental case γ = 1 and recall the martingality-preserving density
fξ,ρ,σ(x) from (5), where now ρ > 2d2. We expect that a similar parametric analysis can be done
beyond γ = 1. Nevertheless, as in the i.i.d. setting, γ = 1 yields the largest class of feasible martingale
couplings (X,Y ) (i.e., the moment condition being weakest; see Remark 4). For simplicity of our
presentation, we do not pursue this direction in detail.

Theorem 4 (The limit distribution for the α-mixing case). Let λ > 2 be such that {(Xi, Yi)}i∈N
forms a stationary α-mixing sequence with coefficients {αn}n∈N satisfying Aα,λ < ∞ and ρ > 2d2.
Suppose also that all moments of (X,Y ) exist. Consider a smoothing kernel ξ with density given by
(4). Then we have the convergence in distribution

√
nMPD∗ξ(Pn, 1)

d⇒
∫

∥Gx∥2 dx, n→ ∞,

where {Gx} is a centered Gaussian process with covariance given by (13). In particular, the sequence
{
√
nMPD∗ξ(Pn, 1)}n∈N is tight.

Remark 2. The current form of Theorem 4 is stated for clarity but not generality: an optimal moment
condition can be derived from Lemma 13 in Section 4.1 by solving the system of inequalities (46).

2.3 Martingale pair hypothesis test

As a direct application of our results, we introduce a novel martingale pair statistical test. Test-
ing the martingale pair hypothesis is related to (but different from) testing if a sequence forms a
martingale. If a sequence forms a martingale, then one can easily check by the tower property that
consecutive pairs of random variables along the sequence form a martingale pair. In addition, a relat-
ively simple extension from the martingale pair test to the martingale test is to project the couplings
to the space E[Y |X] = AX, where A is a known matrix. In particular, we can test the hypothesis
that E[Xm+k+1|Xm+1, . . . , Xm+k] = Xm+1 consistently. So, in principle, our test could be used
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to test the martingale hypothesis. However, the type of assumptions that we impose (e.g. i.i.d. or
stationarity) is better suited for applications such as testing the Markov property, certifying the no-
arbitrage condition in generative finance models, or testing the efficiency of reinforcement learning
policies. We will study these types of applications in detail in our experimental section.

One may also consider the performance of well-known martingale hypothesis tests in the context
of testing the martingale pair hypothesis. For example, a well-known test has been developed by
[37] for one-dimensional sequences. However, this test is inconsistent in Rd. For example, take
i.i.d. standard Gaussian random variables ξ1, ξ2 and consider X = (ξ1, ξ2) and Y = (ξ1+ ξ2, ξ1− ξ2).
We use Xj for j = 1, 2 to denote the j-th entry of the vector X (similarly for Y j). It follows that
for a fixed j, the pair (Xj , Y j) forms a martingale pair. However, (X,Y ) is not a martingale in
dimension d = 2. In other words, the martingale property in separate dimensions does not guarantee
joint martingality. Our martingale pair test solves this inconsistency issue. It is, however, important
to note that in contrast to [37], we impose a mixing assumption on the sequence itself, and not
on the martingale differences. While the approach that we present can be adapted in the context
of martingale differences, the assumptions are motivated by the applications mentioned earlier and
discussed in Section 5.2.

The SE-MPD can be directly used to test the null hypothesis that (X,Y ) is a martingale pair
under P0, when {Xi : 1 ⩽ i ⩽ n} is i.i.d. or satisfies stationarity and mixing conditions; for this,
we simply consider (Xi, Yi) with Yi = Xi+1. In Section 5.2, we discuss applications that motivate
the assumptions that we impose in our results. These include testing the Markov property and the
quality of reinforcement learning policies trained in a simulated environment, among others.

2.3.1 Implementation and test properties

In this section, we provide a concrete guide for the implementation of the test and study a range
of test properties including Type I error coverage, consistency, and some power-related results.

To instantiate the use of our results for martingale pair testing, under the assumptions leading
to Theorem 4, we propose the following three-step procedure for a test with an asymptotically 95%
type I error:

• Step 1: Compute n1/2MPD∗ξ(Pn, 1) as a function of σ and select σ ⩾ 1 in order to maximize
MPD∗ξ(Pn, 1).

• Step 2: Compute the 95% quantile of the generalized chi-squared distribution
∫
∥Gx∥2 dx;

this can be computed via Monte Carlo simulation.

• Step 3: Reject the hypothesis if n1/2MPD∗ξ(Pn, 1) is larger than the quantile computed in
Step 2.

It is easy to see that under the null hypothesis, assuming that σn chosen as indicated in Step
1 remains bounded in a compact set, then the test’s type I error (i.e. incorrectly rejecting that the
data generating distribution satisfies the martingale pair hypothesis) is controlled asymptotically at
the desired level of accuracy based on the quantile of the limiting distribution

∫
∥Gx∥2 dx. This

follows from the uniform continuity on compact sets of the distribution of
∫
∥Gx∥2 dx as a function

of σ.

Corollary 1. Under the assumptions of Theorem 5, if E[Y |X] ̸= X, we have MPD∗ξ(Pn, 1) →
MPD∗ξ(P0, 1) > 0. In particular, the probability of rejecting the hypothesis converges to 1.

In Step 1 of our description above, we propose selecting σ by maximizing the SE-MPD as
a function of σ. We will study the behavior of such σ = σn depending on how similar a non-
martingale pair generating process is from a martingale (e.g. in terms of satisfying, for instance,
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E[(Y −X)Xj ] = 0 for j = 0, 1, . . . , k − 1 but E[(Y −X)Xk] ̸= 0). To study this behavior, we start
with the following observation. If (X,Y ) ∈ L2p, then by Markov’s inequality∑

n∈N
nP(|Xi| > σn) ≪

∑
n∈N

nσ−2p
n <∞

holds. For σn = n
1
p+δ this implies X1, . . . , Xn ∈ [−σn, σn] eventually almost surely by the Borel-

Cantelli lemma.
Therefore, for n large, we may assume that |Xi/σn| ⩽ 1 for each i. By Taylor’s Theorem, for

k ∈ N, we may write

fξ(u− Xi

σn
) =

k∑
j=0

f
(j)
ξ (u)

j!
(−Xi

σn
)j +Ok

(
|Xi

σn
|k+1 sup

u−1⩽t⩽u+1
|f (k+1)

ξ (t)|
)
. (9)

Suppose that σn = ω(
√
n). Then we have

√
nMPD∗ξ

σn
(Pn, 1)

=

∫
| 1√
n

n∑
i=1

(Yi −Xi)fξ(u)|du+O

(∫
1

σn
√
n

n∑
i=1

|(Yi −Xi)Xi| sup
u−1⩽t⩽u+1

|f ′ξ(t)|du

)

= | 1√
n

n∑
i=1

(Yi −Xi)|
∫

|fξ(u)|du+ o(1).

This means the convergence holds if (X,Y ) ∈ L4+δ and E[X] = E[Y ]. If E[X] ̸= E[Y ], the last
expression above converges to ∞.

More generally, one can show the following: suppose that (X,Y ) ∈ L4k+4+δ, E[(Y −X)Xj ] = 0
for j = 0, 1, . . . , k − 1 but E[(Y −X)Xk] ̸= 0, and that n1/(2(k+1)) ≪ σn ≪ n1/(2k). Then the term
corresponding to k in the sum of (9) dominates and converges to ∞ for n→ ∞, while the rest terms
are of constant order. So, the maximizer of σ in Step 1 corresponds to the choice of σn.

In summary, we argue that σ = O(1) leads to an asymptotically exact type I error specified by the
test (this is the point of choosing the quantile as indicated in Step 2). On the other hand, the hard
instances of alternatives (i.e. data consistent with processes that are very similar to martingales)
lead to a selection according to Step 1 that is also close to σn = O(1), as discussed in the previous
paragraph. In fact, if P0 is not a martingale law, then we can select k arbitrarily large by a density
argument.

For easy instances (i.e. small values of k), the statistic obtained in Step 1 according to our rule
will correspond to a large number, and Theorem 3 implies that the quantile in Step 2 will remain
bounded even if σn is large. So, based on this intuition, we believe that our selection criterion for σ
is sensible. The statistical properties of this test (e.g. asymptotic efficiency) are interesting and will
be studied in future work.

3 Setting the stage for future research

The goal of this section is to stimulate the appetite and set the stage for future research questions
of importance strongly connected with our main contributions. We divide this section into two
subsections. First, we study finite-sample rates for the MPD, which are obviously interesting in
their own right, but in particular may be helpful in further studying the martingale pair test that
we introduce. We will conclude that an investigation of finite-sample rates should involve the choice
of the smoothing kernel. Thus, the second subsection revisits our statistical analysis in the context
of general smoothing kernels that may not be of the form (5).
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3.1 Finite-sample rates for γ = 1

In addition to large-sample asymptotic statistics, finite-sample asymptotics can also be developed.
In this section, we provide preliminary results on the finite-sample asymptotics for the SE-MPD when
γ = 1.

Assume that P0 is the law of a martingale pair. We apply classical tools from empirical process
theory to derive an upper bound of E[MPD∗ξ(Pn, 1)] in Proposition 2 below. More concretely we
show that E[MPD∗ξ(Pn, 1)] = O(n−1/2), i.e. the SE-MPD exhibits a parametric convergence rate.

Recall the density given by (5). We make this choice mainly for technical reasons: as will become
clear from the proof (see Section 3.1), it is of paramount importance that Pξ exhibits heavier tails
than P0. The main result in this subsection is the following:

Proposition 2. Suppose that ρ > γ + d and (X,Y ) ∈ L2p for some p > d+ 1. Then there exists a
universal constant L > 0 such that

E[MPD∗ξ(Pn, 1)]

⩽ Ln−1/2
d∑

j=1

∥∥Xj − Y j
∥∥
2p
Cρ

[
d3/2ρ

(
E[∥X∥2p2 ]1/(2q)2p−1 σ−p

p− 1− d
+ 2ρ+1 σ−1

ρ+ 1− d

)

+ d

(
E[∥X∥2p2 ]1/(2q)2p−1 σ

−(p−1)

p− 1− d
+ 2ρ

1

ρ− d

)
+ (

√
dρσ−(d+1) + σ−d)(σd + 1)

]
. (10)

We remark that a finite-sample guarantee in the form of Proposition 2 is also achievable for the
mixing case using the explicit bound (44) below in Lemma 13.

The upper bound (10) is far from being tight in general, and there is certainly room for improve-
ment. To this end, we believe that improving the smoothing measure Pξ is likely to be an important
task. In our paper, we work with smoothing function fξ,ρ(x) = Cρ(∥x∥2 + 1)−ρ. In the section
below, we extend our analysis to a general fξ to pave the way for future research.

3.2 Towards a general selection of smoothing kernel

Let us define
fra(x, y) := (1 ∨ ∥a∥r2)(y − x)fξ(a− x)

for some r > d and set
Fr

j := {(fra )j : a ∈ Rd}, j = 1, . . . , d.

We also set
∥∇k

x,yfξ(x)∥∞ := max
i1,...,ik∈{1,...,d}

|∇k
xi1

...xik
fξ(x)|

for k ∈ N0 and β := ⌈2d/(2− δ)⌉ for δ ∈ (0, 1).
Throughout this subsection, we make the following standing assumption:

Assumption 1. The following are satisfied for some δ ∈ (0, 1):

• There exists D = D(δ, d) such that

(1 ∨ ∥x∥r2) max
0⩽k⩽β

∥∇k
x,yfξ(x)∥∞ ⩽ D (11)

holds for all x ∈ Rd.

• (X,Y ) ∈ Ls for some s > 4(2d+ 1 + r).

Our main result for this subsection is the following:
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Proposition 3. Under Assumption 1 there exists a constant C = C(β, δ, d, r,D) such that

√
nE[MPD∗ξ(Pn, 1)] ⩽ C

∫ C
(
1+E
[
∥(X,Y )∥2(r+1)

2

])
0

(1
ε

)1−δ/2

dε.

Remark 3. In order to give a unified presentation of results in this subsection, we have refrained
from optimizing the moment condition on (X,Y ) in Assumption 1. In fact, as

4(2d+ 1 + r) > 2(1 + 3d) > 2(d+ 1),

this moment condition is more stringent than the moment condition we impose in Theorem 5 below
for the case γ = 1; see also Remark 4. However, the choice of fξ in Theorem 5 below is in a fixed
parametric class with quite heavy tails, while Proposition 4 offers much greater flexibility in choosing
fξ, e.g. one could choose fξ to be the normal density or other kernels frequently used in density
estimation.

Once again, the finite-sample bound we developed in Proposition 3 is likely not optimal. Our
discussion on the case of the general fξ offers a starting point for future research on this topic.
Deriving neat finite-sample bounds that are also of practical use is left for further investigation.
Already, the approach leading to Proposition 3 can be used directly to establish a particular case of
Theorem 5 directly. We record this result as the next proposition.

Proposition 4. Under Assumption 1, it holds that

√
nE[MPD∗ξ(Pn, 1)]

d⇒
∫

∥Gx∥2 dx, (12)

where {Gx} is a centered Rd-valued Gaussian random field with covariance

E[GxG
⊤
y ] = E[(Y −X)fξ(x−X)fξ(y −X)(Y −X)⊤], x, y ∈ Rd. (13)

4 Methodological development and technical proofs

In this section, we offer a rigorous step-by-step presentation of the methodological developments
leading up to the main results in the previous two sections. We first introduce some necessary
notations.

We let C > 0 denote a large constant depending only on certain parameters, e.g., (X,Y ) and fξ.
The number L > 0 will denote a large absolute constant that does not depend on anything else. The
numbers L,C may not be the same on each occurrence. We write A ≍ B if A/C ⩽ B ⩽ CA. For a
class F of real-valued functions and a norm ∥·∥ on a space containing F , we define the bracketing
number N(ε, ∥·∥ ,F) as the smallest number of ε-brackets needed to cover F , where for f, g the
bracket [f, g] is the set {h ∈ F : f ⩽ h ⩽ g}, and [f, g] is called an ε-bracket if ∥f − g∥ < ε. For
an event E, 1E denotes the indicator random variable of E. We will assume throughout that (p, q)
forms a conjugate pair, i.e., p−1 + q−1 = 1. For a finite set A, we denote its cardinality by |A|. For
x ∈ R, we denote the floor of x by ⌊x⌋.

4.1 The SE-MPD revisited

In this subsection, we walk through the theoretical developments from Section 2.1. We start
with an example where the classical Wasserstein distance fails to distinguish martingale laws from
non-martingale laws. This is a variation of the example discussed in the Introduction. We will
elaborate on this modification to illustrate why causality is important.
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Example 2. Consider the random variables (X,Y,Xε, Y ε) defined on (Ω,F , µ):

µ(X = 1, Y = 2) =
1

2
= µ(X = 1, Y = 0),

µ(Xε = 1 + ε, Y ε = 2) =
1

2
= µ(Xε = 1− ε, Y ε = 0).

Clearly (X,Y ) is martingale in its natural filtration, while (Xε, Y ε) is not; however their laws are

close in Wγ : in fact it is easy to check that Wγ(P,Pε) ⩽ ε for (X,Y )
law∼ P, (Xε, Y ε)

law∼ Pε.

What goes wrong in the above example? While the processes are adapted to their natural
filtration, the couplings π in the definition of Wγ need not be. This motivates the concept of bi-
causal coupling (see Definition 1) and what we define as the adapted, nested or bi-causal Wasserstein
Distance AWγ (see Definition 2).

Example 3 (Example 2 with causality constraint). Consider again the random variables
(X,Y,Xε, Y ε) defined in Example 2. From Definition 1 one can check that any causal coupling
π from P to Pε needs to satisfy Law(Y |Xε) = Law(Y ). Thus

AWγ(P,Pε)γ ⩾ inf
{
E
[
E[∥Y − Y ε∥γ2 |X

ε] + εγ
]
: Law(Y |Xε) = Law(Y )

}
=

1

2

(
1 + 1

)
+ εγ = 1 + εγ > 1

for all ε > 0.

Using Definition 2, we introduce the central object of our paper: the martingale projection
distance (see Definition 3). In particular, the following relationship holds for MPD:

Lemma 1. For γ ⩾ 1, we have

MPD(P, γ) = 0 ⇐⇒ P is a martingale measure. (14)

Proof of Lemma 1. Clearly, the identity coupling is adapted, so MPD(P0, γ) = 0 if P0 is a martingale
measure. On the other hand, assume that MPD(P0, γ) = 0, i.e. there exists a sequence (Qn)n∈N
of martingale couplings such that limn→∞ AWγ(P0,Qn) = 0. As the set of martingale measures is
closed in AWγ , we conclude that P0 is a martingale measure too.

Let us define the asymmetric causal Wasserstein distance CWγ(Q,P) as

CWγ(Q,P)γ := inf
{
E
[
∥Y − Y ′∥γ2 + ∥X −X ′∥γ2

]
: π ∈ P((Rd)4), (X,Y,X ′, Y ′)

law∼ π,

π is a causal coupling from Q to P
}
.

The MPD does not change, if one replaces AWγ(P,Q) by the asymmetric causal Wasserstein
distance CWγ(Q,P). This is stated in the next proposition:

Proposition 5. It holds that

MPD(P, γ) = inf{CWγ(Q,P)γ : E[Y |X] = X for (X,Y )
law∼ Q}.

On the other hand, the causality constraint is essential, as the following example shows:

Example 4 (Causality is essential). Consider again (X,Y,Xε, Y ε) and Pε as defined in Example 2.
By Theorem 1 we have

MPD(Pε, γ) =
1

2
E[∥Xε − E[Y ε|Xε]∥22] =

1

2
|1− ε|2

15



and so in particular

lim
ε→0

MPD(Pε, γ) = lim
ε→0

1

2
|1− ε|2 =

1

2
.

This is no longer true if we replace the causal martingale constraint E[Y ′|X,X ′] = X ′ by the weaker
martingale condition E[Y ′|X ′] = X ′:

lim
ε→0

inf
{
E
[
∥Y − Y ′∥22 + ∥X −X ′∥22

]
: π ∈ P((Rd)4), (X,Y,X ′, Y ′)

law∼ π, E[Y ′|X ′] = X ′

π(A×B × R× R) = Pε(A×B) for all Borel sets A,B ⊆ Rd
}
⩽ lim sup

ε→0
ε2 = 0.

Indeed this follows by the choice X ′ = 0 and Y ′ = Y ε in the above infimum. In particular, we have

MPD(P, γ) > inf{CWγ(P,Q)γ : E[Y |X] = X for (X,Y )
law∼ Q}

in general.

In fact, the causality constraint in the definition of MPD only plays a role through the conditional
expectation, as the following corollary states:

Corollary 2. We have

MPD(P, γ) = inf
{
E
[
∥Y − Y ′∥γ2 + ∥X −X ′∥γ2

]
: π ∈ P((Rd)4), (X,Y,X ′, Y ′)

law∼ π,

π(A×B × Rd × Rd) = P(A×B) for all Borel sets A,B ⊆ Rd,

E[Y ′|X ′, X] = E[Y ′|X ′] = X ′}.
To delineate the theoretical development of Proposition 5 and Corollary 2, from which Theorem

1 follows, we state and prove a series of results.

Proof of Proposition 5 and Corollary 2. Let us define

M̃PD(P, γ) := inf
{
E
[
∥Y − Y ′∥γ2 + ∥X −X ′∥γ2

]
: π ∈ P((Rd)4), (X,Y,X ′, Y ′)

law∼ π,

π(A×B × Rd × Rd) = P(A×B) for all Borel sets A,B ⊆ Rd,

E[Y ′|X ′, X] = E[Y ′|X ′] = X ′}.
By definition we have

M̃PD(P, γ) ⩽ inf{CWγ(P,Q)γ : E[Y |X] = X for (X,Y )
law∼ Q} ⩽ MPD(P, γ). (15)

In consequence, to prove Proposition 5 and Corollary 2 we only need to show that M̃PD(P, γ) =
MPD(P, γ). For this, we first show the following:

Lemma 2. We have

M̃PD(P, γ) = 21−γE [∥X − E[Y |X]∥γ2 ] . (16)

Proof. We first show the ⩽-inequality in (16). For this we define

X ′ = X +
1

2
(E[Y |X]−X), Y ′ = Y +

1

2
(X − E[Y |X]). (17)

We note that X ′ is σ(X)-measurable, and Y ′ is σ(X,Y )-measurable. Thus σ(X,X ′) = σ(X) and
we compute

E[Y ′|X ′, X] = E[Y ′|X] =
1

2
(E[Y |X] +X) = X ′. (18)
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Furthermore by construction

X ′ −X =
1

2
(E[Y |X]−X) = Y − Y ′

and thus

E
[
∥Y − Y ′∥γ2 + ∥X −X ′∥γ2

]
= 21−γE [∥X − E[Y |X]∥γ2 ] . (19)

Using the tower property we also compute

E[Y ′|X ′] = E[E[Y ′|X,X ′]|X ′]
(18)
= E[X ′|X ′] = X ′,

so the martingale property holds.
Therefore, it suffices to prove

M̃PD(P, γ) ⩾ 21−γE [∥X − E[Y |X]∥γ2 ] .

Consider a coupling π where (X,Y )
law∼ P and E[Y ′|X ′, X] = X ′. First, using the elementary

inequality (aγ + bγ) ⩾ 21−γ(a+ b)γ for a, b ⩾ 0 and then applying Jensen’s inequality we obtain

E
[
∥Y − Y ′∥γ2 + ∥X −X ′∥γ2

]
= E

[
E
[
∥Y − Y ′∥γ2 + ∥X −X ′∥γ2 |X

]]
⩾ 21−γE

[
E
[
(∥Y − Y ′∥2 + ∥X −X ′∥2)γ |X

]]
⩾ 21−γE

[
E
[
∥Y − Y ′∥2 + ∥X −X ′∥2|X

]γ]
.

Note that by assumption we have E[Y ′|X ′, X] = E[Y ′|X ′] = X ′. By repeated use of Jensen’s
inequality, the inner conditional expectation can be bounded by

E[∥Y − Y ′∥2 + ∥X −X ′∥2 |X] ⩾ E[∥X −X ′ + Y ′ − Y ∥2|X]

= E[E[∥X −X ′ + Y ′ − Y ∥2|X ′, X]|X]

⩾ E [∥E[X −X ′ + Y ′ − Y |X,X ′]∥2 |X]

= E [∥X − E[Y |X,X ′]∥2 |X]

⩾ ∥E [X − E[Y |X,X ′]|X]∥2
= ∥X − E[Y |X]∥2 .

Combining the two estimates above yields

M̃PD(P, γ) ⩾ 21−γE
[
E
[
∥Y − Y ′∥2 + ∥X −X ′∥2|X

]γ]
⩾ 21−γE

[
∥X − E[Y |X]∥γ2

]
,

as required.

Lemma 3. We have

M̃PD(P, γ) = MPD(P, γ).

Proof. We recall from (15) that

M̃PD(P, γ) ⩽ MPD(P, γ).

It thus suffices to show the reverse inequality. We will do this by constructing a sequence of bi-causal
couplings (πδ), which achieve (16) for δ ↓ 0: we construct (Xδ, Y δ) according to Lemma 4 below

and set πδ law∼ (X,Y,Xδ, Y δ). It is now easy to show that πδ achieves (3) for δ ↓ 0: we simply write

E
[
∥Y − Y δ∥γ2 + ∥X −Xδ∥γ2

]
= E

[
∥Y − Y ′ + (Y ′ − Y δ)∥γ2 + ∥X −X ′ + (X ′ −Xδ)∥γ2

]
.

Taking δ ↓ 0, the ⩽-inequality in (3) then follows from (19) and ∥Y δ − Y ′∥2 = ∥Xδ −X ′∥2 ⩽ dδ. It
remains to note that π is bi-causal, as σ(X,Xδ) = σ(X) = σ(Xδ). This concludes the proof.
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We have used the following lemma, which is a slight extension of Lemma 3.1 in [9]:

Lemma 4. Let (X,Y,X ′, Y ′) be as in (17). For each δ > 0 there exist random variables Xδ, Y δ

such that the following hold:

• Xδ is σ(X)-measurable and Y δ is σ(X,Y )-measurable,

• X is σ
(
Xδ
)
-measurable,

• ∥Y δ − Y ′∥2 = ∥Xδ −X ′∥2 ⩽ dδ,

• E[Y δ|X,Xδ] = E[Y δ|Xδ] = Xδ.

Proof. For δ > 0 we consider the Borel mappings

ψδ : Rd → (0, δ)d and

ϕδ : Rd → δZd := {δk : k ∈ Zd},

where ψδ is a (Borel-)isomorphism and

ϕδ(x) := argmin{∥x− z∥2 : z ∈ δZd, z ⩽ x}.

We set

Xδ := ϕδ (X
′) + ψδ (X) ,

Y δ := Y ′ + (Xδ −X ′).

By definition, Xδ is σ(X) = σ(X,X ′)-measurable, X is σ
(
Xδ
)
-measurable, Y δ is σ(X,Y ) =

σ(X,Xδ, Y ′)-measurable, and

∥Y δ − Y ′∥2 = ∥Xδ −X ′∥2 ⩽ dδ.

The martingale property follows from

E[Y δ|X,Xδ] = E[Y δ|X] = E[Y ′ + (Xδ −X ′)|X]
(18)
= X ′ + (Xδ −X ′) = Xδ,

recalling that σ(X) = σ(Xδ) ⊇ σ(X ′). This concludes the proof.

Combining Lemmas 2 and 3 yields Proposition 5 and Corollary 2. Theorem 1 also follows
immediately.

While we have derived the closed-form formula for MPD in Theorem 1, note that if (X,Y )
have a continuous distribution under P0, En[Y |X] = Y generally does not converge to X as the
sample size increases, as we argued at the beginning of Section 2.1.2. To overcome this, we have
applied a smoothing technique and introduced the SE-MPD (see Definition 4) in Section 2.1.2. We
have motivated this by Proposition 1, which states that under mild conditions, P0 is martingality-
preserving (see Definition 5). However, this is not always true, as shown by the following example:

Example 5. We provide a counterexample where (X + ξ, Y + ξ) is a martingale but (X,Y ) is not,

and (X,Y, ξ)
law∼ P⊗Pξ with X,Y, ξ real-valued and absolutely continuous. For f ∈ L1(R) we denote

by Ff its Fourier transform. Recall two facts from Fourier analysis:

• If f ∈ L1(R) is nonnegative and Ff ⩾ 0, then Ff ∈ L1(R). This is Corollary 8.7 of [16].

• Fourier inversion: if f,Ff ∈ L1(R), then FFf(x) = f(−x).
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Together with [45], it follows from the above facts that there exists a function fξ such that fξ ⩾ 0,∫
fξ = 1, and that Ffξ(x) = 0 for |x| ⩾ 1. For example, let fξ = FΦ where Φ(x) = max(1− |x|, 0).

Similarly, using Fourier inversion, we may construct a function ψ that is O(|x|−3) at |x| → ∞ and
such that Fψ(x) = 0 for |x| ⩽ 1. For example, this can be done by taking ψ = FΨ where Ψ
vanishes on [−1, 1] and satisfies Ψ′,Ψ′′,Ψ′′′ ∈ L1(R). In particular, there exists a probability density
fX of an integrable random variable on R such that h := ψ/fX ∈ L∞(R). Now suppose that X
and ξ have marginal densities given by fX and fξ constructed above, and consider any coupling
(X,Y ) satisfying that E[Y |X] = X + h(X). Since h is bounded and not identically zero, (X,Y ) is
integrable and is not a martingale. We check that (X+ ξ, Y + ξ) is a martingale. It follows from our
construction that for each x ∈ R (for convenience we work with regular conditional probabilities),

E[Y + ξ | X + ξ = x] =

∫
fξ(u)fX(x− u)∫
fξ(v)fX(x− v)dv

(u+ E[Y |X = x− u])du

=

∫
fξ(u)fX(x− u)(x+ h(x− u))du∫

fξ(v)fX(x− v)dv

= x+

∫
fξ(x− u)ψ(u)du∫
fξ(v)fX(x− v)dv

.

Note that the Fourier transform of the numerator
∫
fξ(x − u)ψ(u)du is equal to FfξFψ, which is

identically zero by our construction. Hence, E[Y + ξ | X + ξ = x] = x for all x ∈ R, proving that
(X + ξ, Y + ξ) is a martingale.

To characterize laws that are martingality-preserving, we presented Proposition 1. We now give
a detailed proof of this result.

Proof of Proposition 1. We first note that the martingale condition

E[(Y + ξ)− (X + ξ)|X + ξ] = 0

can be rewritten as
E[(Y −X)|X + ξ] = 0.

Now we define the functions m,n : Rd → R via m(a) := E[(Y −X)1{X⩽a−ξ}] and n(a) := E[(Y −
X)1{X⩽a}] for a ∈ Rd, where ⩽ denotes the lexicographical order in Rd. Using a monotone class

argument, it then suffices to prove that m(a) = 0 for all a ∈ Rd if and only if n(a) = 0 for all
a ∈ Rd. It follows from the triangle inequality that m,n are uniformly bounded. Furthermore, using
a change of variable,

m(a) =

∫
Rd

n(a− x)fξ(x)dx = (−1)d
∫
Rd

n(x)fξ(a− x)dx.

In particular, it follows immediately that n(a) = 0 for all a ∈ Rd implies m(a) = 0 for all a ∈ Rd.
To see the converse we argue as follows: since the Fourier transform of f has no real zeros, we can
apply Wiener’s Tauberian theorem (see [51, Theorem 8]) to conclude that the linear span of the set
of translates {f(a − ·) : a ∈ Rd} is dense in L1(Rd). In particular, m(a) = 0 for all a ∈ Rd only if
n(x) = 0 for a.e. x ∈ Rd. Since m is right-continuous we thus have n(a) = 0 for all a ∈ Rd. This
concludes the proof.

An example of a martingality-preserving smoothing law that we use for this work is given by (4).
To confirm that it is indeed martingality-preserving, we note that by [29, Theorem 2.2] we have∫

Rd

fξ(x)e
i⟨t,x⟩dx =

∫ ∞

0

F0,1

(d
2
,
(r∥t∥2)2

4

)
H(dr),
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where H is the cdf of ∥ξ∥2 and F0,1 is the generalized hypergeometric function. As (r∥ · ∥2)2 ⩾ 0 we
have

F0,1

(d
2
,
(r∥t∥2)2

4

)
⩾ 1 > 0.

Therefore, laws with a density of the form (4) are martingality-preserving. A standard scaling
argument also yields that the densities of the form (5) also qualify.

In addition to (4), there are other smoothing measures that are martingality-preserving. We now
give a few examples of measures Pξ, which satisfy the assumptions of Proposition 1.

Example 6. Assume that fξ is of the form

fξ(x1, . . . , xd) =

d∏
j=1

fj(xj) (20)

for some probability density functions fj , 1 ⩽ j ⩽ d that satisfy
∫
|x|fj(x)dx < ∞ and either one

of the following conditions holds:

(i) fj is symmetric and strictly convex on (0,∞);

(ii) fj is the density of an infinitely divisible distribution.

Then the assumptions of Proposition 1 are satisfied. To see this, note that by (20) we have∫
Rd

fξ(x)e
i⟨t,x⟩dx =

d∏
j=1

∫
R
fj(xj)e

itjxjdxj .

Therefore, it suffices to show that the Fourier transform of each ψj has no real zeros. Now (i) follows
from [45], while (ii) is a consequence of [40, Lemma 7.5].

Example 7. We recall that a (centered) multivariate Student’s t-distribution with a degree of
freedom ν > 0 and scaling matrix Σ (that is symmetric positive definite) has pdf given by

C(Σ)
(
1 +

⟨xΣ−1, x⟩
ν

)−(ν+d)/2

,

where C(Σ) is an appropriate normalizing constant. The multivariate Student’s t-distribution is
known to be infinitely divisible ([24]), and hence the assumptions of Proposition 1 are satisfied.
That is, multivariate Student’s t-distributions are martingality-preserving.

4.2 Finite-sample rates for γ = 1 revisited

In this section, we prove Proposition 2. The arguments here are also fundamental towards proving
Theorem 2. To start, we use the following discrepancy bound to control the fluctuation of empirical
processes:

Lemma 5 (Corollary 14.1.2 of [43]). There exists a universal constant L > 0 such that the following
holds: consider a measure space (Ω, ν) and an i.i.d. sequence {Zn}n∈N sampled from ν. Let F ⊆
L2(ν) with 0 ∈ F . For A ⊆ F define the function hA via

hA(ω) := sup
f,f ′∈A

|f(ω)− f ′(ω)|.

Then

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

(f(Zi)− E[f(Z)])

∣∣∣∣∣
]
⩽ L

√
n inf sup

f∈F

∑
l⩾0

2l/2
∥∥hAl(f)

∥∥
2
,

where Z
law∼ ν and the infimum is taken among all sequences of refining partitions {Al} of F such

that |A0| = 1, |Al| ⩽ Nl := 22
l

, and Al(f) is the set in the partition Al that contains f .
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We make a few conventions to shorten notation. For k ∈ Z \ {0}, define the interval Ik to be
[k − 1, k] if k < 0 and [k, k + 1] if k > 0. For k = (k1, . . . , kd) ∈ Zd we define the multi-interval

Ik = Ik1 × Ik2 × . . . Ikd . (21)

Next we define the class of functions Fk = {fa}a∈Ik ∪ {0}, where

fa(x, y) := (y − x)fξ(a− x), x, y ∈ Rd. (22)

Denote by f ja the j-th coordinate of fa. We also define

ξn(x) :=
1

n

n∑
i=1

(Yi −Xi)fξ (x−Xi) , x ∈ Rd. (23)

Furthermore we write

pn(x) :=
1

n

n∑
i=1

fξ(x−Xi).

Combining Theorem 1 and Lemma 7 leads to the following representation of the MPD:

MPD∗ξ(Pn, γ) = 21−γEn [∥X − En[Y |X]∥γ2 ]

= 21−γEn

[∥∥∥∥∑n
i=1(Yi −Xi)fξ(X −Xi)∑n

i=1 fξ(X −Xi)

∥∥∥∥γ
2

]
= 21−γ

∫
pn(x)

∥∥∥∥ ξn(x)pn(x)

∥∥∥∥γ
2

dx

= 21−γ

∫
∥ξn(x)∥γ2
pn(x)γ−1

dx. (24)

Note that since (X,Y )
law∼ P is a martingale we have

ξn(x) → E [(Y −X)fξ (x−X)] = 0 ∈ Rd µ-a.s. (25)

for each x ∈ R by the strong law of large numbers.
In view of (24) it is natural to investigate upper bounds for E[∥ξn(x)∥2] in order to determine

finite-sample rates of E[MPD∗ξ(Pn, 1)]. This is the goal of the following lemma, which also plays a
crucial role when proving Theorem 5.

Lemma 6. Assume (X,Y ) ∈ L2p for some p > 1 and recall the density (5) of ξ. Then we have for
all ∥k∥2 ⩾ σ,

E
[
sup
x∈Ik

∥ξn(x)∥2
]
⩽ Ln−1/2 dCρ

σd+1

(
(
√
dρ+ σ)E[∥X∥2p2 ]1/(2q)(

∥k∥2
2

)−(p−1)

+ (
√
dρ+ ∥k∥2)(

∥k∥2
2σ

)−ρ−1

)
d∑

j=1

∥∥Xj − Y j
∥∥
2p
.

In particular, for all (X,Y ) ∈ L2p and ∥k∥2 ⩾ σ there exists C > 0 independent of k and n such
that

E
[
sup
x∈Ik

∥ξn(x)∥2
]
⩽ Cn−1/2(∥k∥1−p

2 + ∥k∥−ρ
2 ).
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Proof. Let us fix k ∈ Zd, ∥k∥2 > 5. We aim to bound E
[
supx∈Ik

∥ξn(x)∥2
]
using Lemma 5. Writing

ξn(x) = (ξ1n(x), . . . , ξ
d
n(x)) we have

∥ξn(x)∥2 ⩽
d∑

j=1

|ξjn(x)| (26)

by the triangle inequality. It is thus sufficient to fix j ∈ {1, . . . , d} and bound

E
[
sup
x∈Ik

|ξjn(x)|
]
=

1

n
E
[
sup
a∈Ik

|
n∑

i=1

f ja(Xi, Yi)|
]
=

1

n
E
[

sup
fa∈Fk

|
n∑

i=1

f ja(Xi, Yi)|
]
,

where we recall the class of functions Fk defined in (22) above.
To this end we take Ω = Rd × Rd and let ν be the conditional distribution of (X,Y ) given

(X1, X2, . . . , Xn, Yn) in Lemma 5. In order to apply Lemma 5 we first have to construct the partitions
Al, l ⩾ 0 of Fk. We proceed as follows: set A0 := {Fk}. For l ⩾ 1, we divide the box Ik uniformly

in the d directions into max(1, (⌊N1/d
l ⌋− 1)d) many smaller boxes Ik,s indexed by s ∈ Nd : 1 ⩽ sj <

max(2, ⌊N1/d
l ⌋) for 1 ⩽ j ⩽ d, where we also recall Nl = 22

l

. Define

Al := {{0}} ∪

( ⋃
s∈Nd:1⩽s<max(2,⌊N1/d

l ⌋)

{
{fa}a∈Ik,s

})
.

It follows that |Al| ⩽ Nl for l ⩾ 0. For d-dimensional vectors A,B ∈ Rd with A < B we identify
{fa}a∈[A,B] with [A,B] := [A1, B1]× [A2, B2]× . . . [Ad, Bd] in the following. Recall (5), from which
we compute

∥∇fξ,ρ,σ(x)∥2 = ρσ−(d+1)Cρ

(∥∥∥x
σ

∥∥∥
2
+ 1
)−(ρ+1)

. (27)

Consider A,B ∈ Ik. For a ∈ [A,B] and ∥x∥2 ⩽ ∥k∥2 /2, we have ∥a− x∥2 ⩾ ∥a∥2 − ∥x∥2 ⩾ ∥k∥2 /2.
By the mean-value theorem, using that fξ is radially symmetric, we have

sup
A⩽a⩽b⩽B

|f ja(x, y)− f jb (x, y)|

= |xj − yj | sup
A⩽a<b⩽B

|fξ(a− x)− fξ(b− x)|

⩽

{
∥A−B∥2|xj − yj |∥∇fξ(k/2)∥2 if ∥x∥2 ⩽ ∥k∥2 /2,
∥A−B∥2|xj − yj | supx∈Rd ∥∇fξ(x)∥2 otherwise,

⩽

{
∥A−B∥2|xj − yj |ρσ−(d+1)Cρ

(∥∥ k
2σ

∥∥
2
+ 1
)−(ρ+1)

if ∥x∥2 ⩽ ∥k∥2 /2,
∥A−B∥2ρσ−(d+1)Cρ|xj − yj | otherwise,

=: ∥A−B∥2h̃jk(x, y).

(28)

In addition,

sup
a∈Ik

|f ja(x, y)| = |xj − yj | sup
a∈Ik

|fξ(a− x)|

⩽

{
|xj − yj |∥fξ(k/2)∥2 if ∥x∥2 ⩽ ∥k∥2/2,
Cρσ

−d|xj − yj | otherwise,

=: g̃jk(x, y).

(29)
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Following Lemma 5 we write hjA := supf,g∈A |f j − gj |. Therefore, for A = k and B = k + 1, and
recalling that Fk = {fa}a∈Ik ∪ {0}, we obtain

∥hjFk
∥2 =

∥∥ sup
a,b∈Ik

|f ja(X,Y )− f jb (X,Y )| ∨ ( sup
a∈Ik

|f ja(X,Y )|)
∥∥
2
⩽ 2∥g̃jk(X,Y )∥2.

As {0} ∈ Al for all l ⩾ 1, we thus have for f = 0,∑
l⩾0

2l/2∥hjAl(f)
∥2 =

∑
l⩾0

2l/2∥hjAl(0)
∥2 = ∥hjFk

∥2 ⩽ 2∥g̃jk(X,Y )∥2.

For f ̸= 0 we again use (28), this time with adjusted bounds A ⩽ B such that B − A =

(max(1, ⌊N1/d
l ⌋ − 1))−1 · 1, to obtain∑

l⩾0

2l/2∥hjAl(f)
∥2 ⩽

∑
l⩾0

2l/2(max(1, ⌊N1/d
l ⌋ − 1))−1∥h̃jk(X,Y )∥2.

Note that ∑
l⩾0

2l/2(max(1, ⌊N1/d
l ⌋ − 1))−1 ⩽

∑
l⩽log2 d

2l/2 + L
∑

l>log2 d

2l/2−2l/d

⩽ L2(log2 d)/2 + L
∑
l⩾0

2(l+log2 d)/2−2l

⩽ L
√
d+ L

√
d
∑
l⩾0

2l/2−2l ⩽ L
√
d.

This yields ∑
l⩾0

2l/2∥hAl(f)∥2 ⩽ L
√
d∥h̃jk(X,Y )∥2.

It now follows from (25) and Lemma 5 that for ∥k∥2 > σ,

E
[
sup
x∈Ik

|ξjn(x)|
]
=

1

n
E

[
sup
f∈Fk

∣∣∣ n∑
i=1

(f j(Xi, Yi)− E[f j(X,Y )])
∣∣∣]

⩽ Ln−1/2
(√

d∥h̃jk(X,Y )∥2 + ∥g̃jk(X,Y )∥2
)
. (30)

Combining with (26) yields that for ∥k∥2 > σ,

E
[
sup
x∈Ik

∥ξn(x)∥2
]
⩽ Ln−1/2

d∑
j=1

(√
d∥h̃jk(X,Y )∥2 + ∥g̃jk(X,Y )∥2

)
. (31)

It then remains to bound ∥h̃jk(X,Y )∥2 and ∥g̃jk(X,Y )∥2.
Denote by q the conjugate of p > 1, so that p/q = p− 1. Recalling the definition of g̃jk given in

(29), an application of Markov’s inequality leads to

E

[
g̃jk(X,Y )2q

|Xj − Y j |2q

]1/(2q)
⩽

(
P0(∥X∥2 ⩾ ∥k∥2 /2)(

Cρ

σd
)2q + |fξ,ρ,σ(k/2)|2q

)1/(2q)

⩽ (
Cρ

σd
)E[∥X∥2p2 ]1/(2q)(

∥k∥2
2

)−p/q + |fξ,ρ,σ(k/2)|

⩽
Cρ

σd

(
E[∥X∥2p2 ]1/(2q)(

∥k∥2
2

)−(p−1) + (
∥k∥2
2σ

)−ρ

)
.
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By Hölder’s inequality for 1/2 = 1/(2p) + 1/(2q) and since ∥X∥2 ∈ L2p we thus conclude from the
above that

E[g̃jk(X,Y )2]1/2 ⩽
∥∥Xj − Y j

∥∥
2p

E

[
g̃jk(X,Y )2q

|Xj − Y j |2q

]1/(2q)
⩽
∥∥Xj − Y j

∥∥
2p

Cρ

σd

(
E[∥X∥2p2 ]1/(2q)(

∥k∥2
2

)−(p−1) + (
∥k∥2
2σ

)−ρ

)
. (32)

Similarly,

E[h̃jk(X,Y )2]1/2 ⩽
∥∥Xj − Y j

∥∥
2p

ρCρ

σd+1

(
E[∥X∥2p2 ]1/(2q)(

∥k∥2
2

)−(p−1) + (
∥k∥2
2σ

)−ρ−1

)
.

Inserting the above estimates into (31) leads to

E
[
sup
x∈Ik

∥ξn(x)∥2
]
⩽ Ln−1/2

d∑
j=1

∥∥Xj − Y j
∥∥
2p

×

(√
dρCρ

σd+1

(
E[∥X∥2p2 ]1/(2q)(

∥k∥2
2

)−(p−1) + (
∥k∥2
2σ

)−ρ−1

)

+
Cρ

σd

(
E[∥X∥2p2 ]1/(2q)(

∥k∥2
2

)−(p−1) + (
∥k∥2
2σ

)−ρ

))
.

Rearranging the terms completes the proof.

Proof of Proposition 2. Combining Lemma 6 and (24) directly completes the proof.

4.3 Asymptotic distribution of the SE-MPD revisited

In Section 2.2, we state the asymptotic distribution of the SE-MPD for both the i.i.d. case and
the stationary α-mixing case. For the i.i.d. case, our main result was stated in Theorem 2, which
we rephrase with further details below.

Theorem 5. Let γ ⩾ 1 and for ρ > γ+d, consider the density fξ from (4). Suppose that there exists

δ̃ > 0 such that the Rd × Rd-valued martingale coupling (X,Y ) ∈ Lm+δ̃ and one of the following
holds:

(i) m = 2(γ + d+ ρ(γ − 1)),

(ii) m = 2(d+ 1 + ρ− ρ−1
γ ), and ρ > γd+ 1.

Then fξ is a martingality-preserving law and we have the convergence in distribution

nγ/2MPD∗ξ(Pn, γ)
d⇒ 21−γ

∫
Rd

∥Gx∥γ2
E[fξ(x−X)]γ−1

dx, n→ ∞, (33)

where {Gx} is a centered Rd-valued Gaussian random field with covariance

E[GxG
⊤
y ] = E[(Y −X)fξ(x−X)fξ(y −X)(Y −X)⊤], x, y ∈ Rd. (34)

In particular, the sequence {nγ/2MPD∗ξ(Pn, γ)}n∈N is tight.

Remark 4. As a consequence of Theorem 5, the following holds:
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(i) If (X,Y ) ∈ L2min(γd+2,γ+d+(γ−1)max(d,2))+δ̃ (in particular, ∈ L2(γd+min(γ,2)) if d ⩾ 2) for some
δ̃ > 0, then there exists ρ such that (33) holds.

(ii) If (X,Y ) ∈ L2(d+1)+δ̃ for some δ̃ > 0, then (33) holds for γ = 1 and any ρ > γ + d.

(iii) If all moments of (X,Y ) exist, then (33) holds for any γ ⩾ 1 and ρ > γ + d.

Let us also point out the positive dependence on γ of the number of moments of (X,Y ). In
particular, if γ = 1, then the moment condition does not depend on ρ (as it suffices to consider
case (i)). In other words, the class (X,Y ) of “permissible” martingale couplings shrinks in size as
γ increases, and γ = 1 is the optimal choice. For this reason, the case γ = 1 is the most widely
applicable (and turns out the most technically tractable as well), hence deserves a thorough study.

Before providing the proof of Theorem 5, we offer a convenient expression for the smoothed

MPD. We will write En for the expectation of (X,Y )
law∼ P∗ξ

n . Theorem 1 implies that

MPD∗ξ(Pn, γ) = 21−γEn[∥X − En[Y |X]∥γ2 ].

The inner expectation can be computed more explicitly, as the next lemma shows:

Lemma 7. Suppose that (X,Y )
law∼ P∗ξ

n . Then we have

En[Y −X|X] =

∑n
i=1(Yi −Xi)fξ(X −Xi)∑n

i=1 fξ(X −Xi)
,

where we recall that fξ is the density of Pξ.

Proof. We will prove the claim by checking that for each Borel set A,

En[(Y −X)1{X∈A}] = En

[∑n
i=1(Yi −Xi)fξ(X −Xi)∑n

i=1 fξ(X −Xi)
1{X∈A}

]
.

To check this, we first recall that Pn = 1/n
∑n

i=1 δ(Xi,Yi) is the empirical measure of the observations,
and that ξ has density fξ. Furthermore, assume for notational simplicity that the observations
X1, . . . , Xn are pairwise distinct. By the law of total probability we have for any Borel sets A,B ⊆ Rd

and (X,Y, ξ)
law∼ Pn ⊗ Pξ

P∗ξ
n (A×B)

= µ (X + ξ ∈ A, Y + ξ ∈ B)

=

n∑
i=1

µ (X + ξ ∈ A, Y + ξ ∈ B | (X,Y ) = (Xi, Yi))µ ((X,Y ) = (Xi, Yi))

=
1

n

n∑
i=1

µ (ξ ∈ A−Xi, ξ ∈ B − Yi) ,

where the last equality follows from independence of (X,Y ) and ξ. Following the same arguments,

En[(Y −X)1{X∈A}] =
1

n

n∑
i=1

E[(Y + ξ − (X + ξ))1{X+ξ∈A}|(X,Y ) = (Xi, Yi)]

=
1

n

n∑
i=1

∫
A

(Yi −Xi)fξ(x−Xi) dx.

On the other hand,

Pn (A) =
1

n

n∑
j=1

µ (ξ ∈ A−Xj) =
1

n

n∑
j=1

∫
A

fξ(x−Xj) dx,
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and thus

En

[
En[Y −X|X]1{X∈A}

]
=

1

n

n∑
j=1

∫
A

∑n
i=1(Yi −Xi)fξ(x−Xi)∑n

i=1 fξ(x−Xi)
fξ(x−Xj) dx

=
1

n

n∑
i=1

∫
A

(Yi −Xi)fξ(x−Xi) dx.

This proves the claim.

Using Lemma 7 we can provide the proof of Theorem 5.

Proof of Theorem 5. As ρ > d+1, Example 1 immediately implies that fξ is martingality-preserving.
Recall (24). We fix ε > 0 and y ∈ R. We first observe that

lim
K→∞

∫
[−K,K]d

∥Gx∥γ2
E[fξ(x−X)]γ−1

dx =

∫ ∥Gx∥γ2
E[fξ(x−X)]γ−1

dx

in L1, and thus also in distribution. Next, Lemma 9 below implies

∫
Rd\[−K,K]d

∥∥∥ 1√
n

∑n
i=1(Yi −Xi)fξ (x−Xi)

∥∥∥γ
2

( 1n
∑n

i=1 fξ (x−Xi))γ−1
dx

d⇒ 0

for n → ∞. The claim now follows from the above together with Lemma 8 below by taking limits
n→ ∞ and then K → ∞.

We have used the following lemmas:

Lemma 8. Suppose that (X,Y ) ∈ L1. For each K > 0,

∫
[−K,K]d

∥∥∥ 1√
n

∑n
i=1(Yi −Xi)fξ (x−Xi)

∥∥∥γ
2

( 1n
∑n

i=1 fξ (x−Xi))γ−1
dx

d⇒
∫
[−K,K]d

∥Gx∥γ2
E[fξ(x−X)]γ−1

dx.

Proof. Recall fa(x, y) = (y − x)fξ(a − x). As [−K,K]d is bounded, it follows from [47, Example
19.7], that {fa}a∈[−K,K]d is Donsker. By the continuous mapping theorem,

{∥∥ 1√
n

n∑
i=1

(Yi −Xi)fξ (x−Xi)
∥∥γ
2

}
x∈[−K,K]d

d⇒ {∥Gx∥γ2}x∈[−K,K]d

weakly in L∞([−K,K]d). On the other hand, define ga(x) := fξ(a − x), x ∈ Rd. Recall
from (27) that fξ is Lipschitz, so again [47, Example 19.7] implies that the bracketing number
N[ ](ε, {ga}a∈[−K,K]d , L

1(µ)) is finite for every ε > 0. Hence the class {ga}a∈[−K,K]d is Glivenko-

Cantelli by [47, Theorem 19.4]. Furthermore, the set {E[fξ(x−X)]γ−1 : x ∈ [−K,K]d} is bounded
away from zero. Combining these results and using Slutsky’s theorem, this leads to

∥ 1√
n

∑n
i=1(Yi −Xi)fξ (x−Xi) ∥γ2

( 1n
∑n

i=1 fξ (x−Xi))γ−1

d⇒
∥Gx∥γ2

E[fξ(x−X)]γ−1

weakly in L∞([−K,K]d). Applying the continuous mapping theorem yields the desired convergence
in distribution.
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Lemma 9. In the setting of Theorem 5, for any ε, η > 0 there exists K0 > 0 such that for any
K > K0,

lim sup
n→∞

µ
(∫

Rd\[−K,K]d

∥ 1√
n

∑n
i=1(Yi −Xi)fξ (x−Xi) ∥γ2

( 1n
∑n

i=1 fξ (x−Xi))γ−1
dx > η

)
< ε.

We now detail the proof of Lemma 9, which requires a few preliminary results. We introduce the
quantities

Sξ = Sξ(k) := sup
x∈Ik

∥(Y −X)fξ(x−X)∥2

and
Mξ,p =Mξ,p(k) :=

∥∥ sup
x∈Ik

(Y −X)fξ(x−X)
∥∥
p
, p ⩾ 1.

Note that Sξ ⩽Mξ,2.

Lemma 10 ([32, Theorem 3.1]). Suppose that Mξ,p <∞ for some p ⩾ 2. It holds for ∥k∥2 > 5 that

∥∥( sup
x∈Ik

|ξn(x)| − 2E
[
sup
x∈Ik

|ξn(x)|
])

+

∥∥
p/2

⩽
55

√
p

√
n
Mξ,p(k) +

3
√
p

√
n
Sξ(k).

Lemma 11. Let {Zn}n∈N be a sequence of i.i.d. random variables with Zn
law∼ Ber(p). Then

lim
p→1

µ
( n∑
i=1

Zi >
n

2
for all n ∈ N

)
= 1.

Proof. Let us introduce the events

A := {|{i ∈ {1, . . . , n} : Zi = 1}| > n/2 for all n},
An := {|{i ∈ {1, . . . , n} : Zi = 1}| > n/2}.

A union bound yields

µ(Ac) ⩽ µ

( (1−p)−1/2⋃
n=1

Ac
n

)
+ µ

( ∞⋃
n=(1−p)−1/2

Ac
n

)
⩽ µ(Zn = 0 for some 1 ⩽ n ⩽ (1− p)−1/2) +

∞∑
n=⌊(1−p)−1/2⌋

µ
( n∑
i=1

Zi ⩽
n

2

)
⩽
√
1− p+

∞∑
n=⌊(1−p)−1/2⌋

µ
(
Bin(n, p) ⩽

n

2

)
.

As we are interested in the limit p → 1 we can assume without loss of generality that p > 3/4. Let
us also recall Hoeffding’s inequality, which states that for all t > 0 we have

µ(np− Bin(n, p) ⩾ t) ⩽ exp
(
− 2t2

n

)
.

We thus obtain for t = n(p− 1/2),

µ
(
Bin(n, p) ⩽

n

2

)
⩽ µ

(
np− Bin(n, p) ⩾ n(p− 1

2
)
)
⩽ exp

(
− 2n(p− 1

2
)2
)
.
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Combining the above and using the geometric sum formula leads to

µ(Ac) ⩽
√
1− p+

∞∑
n=⌊(1−p)−1/2⌋

exp
(
− 2n(p− 1

2
)2
)

=
√

1− p+ exp
(
− 2⌊(1− p)−1/2⌋(p− 1

2
)2
) ∞∑
n=0

exp
(
− 2n(p− 1

2
)2
)

⩽
√

1− p+ exp
(
− ⌊(1− p)−1/2⌋

8

) ∞∑
n=0

e−n/8.

As p→ 1, the right-hand side tends to 0. This shows µ(A) → 1 as p→ 1.

Lemma 12. We have
Mγ

ξ,2γ ⩽ C(∥k∥γ−(m+δ̃)/2
2 + ∥k∥−γρ

2 ).

Proof. Recall from (29) in the proof of Proposition 2 that

Mγ
ξ,2γ = E

[
sup
a∈Ik

|fa(X,Y )|2γ
]1/2

⩽ ∥g̃k(X,Y )∥γ2γ .

We use a similar argument as in Lemma 6 below to bound the right-hand side using Hölder’s and
Markov’s inequalities. Assume that (X,Y ) ∈ L2γp, where p = (m+ δ̃)/(2γ) > 1. Using our definition
(29),

E[g̃jk(X,Y )2γ ] ⩽ C(E[|Y j −Xj |2γ1{∥X∥2⩾∥k∥2/2}] + ∥k∥−2ργ
2 E[|Y j −Xj |2γ ])

⩽ C
(
µ(∥X∥2 ⩾

∥k∥2
2

)1/q + ∥k∥−2ργ
2

)
⩽ C(∥k∥−2γ(p−1)

2 + ∥k∥−2ργ
2 ).

The claim thus follows.

Proof of Lemma 9. Recall our notation (21). We first bound E
[
supx∈Ik

∥ξn(x)∥γ2
]
, where γ > 1. By

Jensen’s inequality, Sξ ⩽ Mξ,2 ⩽ Mξ,2γ . Using the triangle inequality and Lemmas 6 and 10, we
obtain ∥∥ sup

x∈Ik

∥ξn(x)∥2
∥∥
γ
⩽ 2E

[
sup
x∈Ik

∥ξn(x)∥2
]
+
∥∥( sup

x∈Ik

∥ξn(x)∥2 − 2E[ sup
x∈Ik

∥ξn(x)∥2]
)
+

∥∥
γ

⩽
C√
n
(∥k∥1−(m+δ̃)/2

2 + ∥k∥−ρ
2 ) +

C√
n
Mξ,2γ .

Lemma 12 states that

E
[
sup
x∈Ik

∥ξn(x)∥γ2
]
⩽ Cn−γ/2(∥k∥γ−(m+δ̃)/2

2 + ∥k∥−γρ
2 ). (35)

We now bound from below the quantity

pn(x)
γ−1 =

( 1
n

n∑
i=1

fξ(x−Xi)
)γ−1

.

We consider the event

Ak :=

∞⋂
n=1

An,k :=

∞⋂
n=1

{
|{i ∈ {1, . . . , n} : ∥Xi∥2 ⩽ ∥k∥2/2}| >

n

2

}
, ∥k∥2 > 5.
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For ∥x∥2 > 5/2 we have (1 + ∥x∥2)−ρ ⩾ ∥x∥−ρ
2 /C. As

∥x−Xi∥2 ⩾ ∥x∥2 − ∥Xi∥2,

the inequality

inf
x∈Ik

1

n

n∑
i=1

fξ(x−Xi) ⩾
1

C
(1 + ∥k∥2/2)−ρ ⩾

∥k∥−ρ
2

C
(36)

holds on the event Ak for any n ∈ N. In addition, since pk := µ(∥X∥2 ⩽ k) → 1 as k → ∞ and
{Xn} are independent, Lemma 11 yields µ(Ak) → 1 as ∥k∥2 → ∞.

For ε > 0, pick K1 large such that for all k ⩾ K1, µ[A
c
k] < ε/2. We now distinguish the two

cases stated in the theorem:

Case I : take m = 2(γ + d+ ρ(γ − 1)), where ρ > d+ γ.2 Next, for K > 5 we have by using (36)
and (35),

E

[
1AK1

∫
Rd\[−K,K]d

∥ξn(x)∥γ2
pn(x)γ−1

dx

]
⩽ C

∑
∥k∥2⩾K

E[supx∈Ik
∥ξn(x)∥γ2 ]

∥k∥−ρ(γ−1)
2

⩽ Cn−γ/2
∑

∥k∥2⩾K

∥k∥γ−(m+δ̃)/2
2 + ∥k∥−γρ

2

∥k∥−ρ(γ−1)
2

⩽ Cn−γ/2(Kγ−(m+δ̃)/2+d+ρ(γ−1) +Kd−ρ),

which converges to 0 as K → ∞ for fixed n. By Markov’s inequality, there exists K2 > K1 such
that for all K ⩾ K2,

µ

({∫
Rd\[−K,K]d

∥ 1√
n

∑n
i=1(Yi −Xi)fξ (x−Xi) ∥γ2

( 1n
∑n

i=1 fξ (x−Xi))γ−1
dx > η

}
∩AK1

)
<
ε

2
.

The desired statement is then immediate.

Case II : take m = 2(d+ 1 + ρ− (ρ− 1)/γ). Recall that (X,Y ) ∈ Lm+δ̃ and ρ > γd+ 1. Define
the random variables

ζn,k := sup
x∈Ik

∥∥√nξn(x)∥∥2 = sup
x∈Ik

∥∥ 1√
n

n∑
i=1

(Yi −Xi)fξ (x−Xi)
∥∥
2
, k ∈ Zd, n ∈ N.

It follows from Markov’s inequality and Lemma 6 below that

µ(ζn,k ⩾ x) ⩽ Cx−1
(
∥k∥−2ρ

2 + ∥k∥2−(m+δ̃)
2

)1/2
. (37)

Therefore, by the union bound and (36), there exists δ > 0 small enough such that for any ε > 0,
for n large we have

µ

(∫
Rd\[−K,K]d

∥ξn(x)∥γ2
pn(x)γ−1

dx > ηn−γ/2

)
⩽ µ

 ∑
∥k∥2⩾K

supx∈Ik
∥ξn(x)∥γ2

infx∈Ik pn(x)
γ−1

> ηn−γ/2


⩽

∑
∥k∥2⩾K

µ

(
ζγn,k

∥k∥−ρ(γ−1)
2

>
η ∥k∥−1−δ

2

C

)
+ ε

⩽ C
∑

∥k∥2⩾K

(∥k∥−2ρ
2 + ∥k∥2−(m+δ̃)

2 )1/2

(η ∥k∥−(ρ(γ−1)+1+δ)
2 )1/γ

+ ε.

2Let us recall that the lower bound for ρ is needed from Theorem 1.

29



Since m = 2(d+ 1 + ρ− ρ−1
γ ) and ρ > γd+ 1, we have for δ > 0 small enough that

∑
∥k∥2⩾K

(∥k∥−2ρ
2 + ∥k∥2−(m+δ̃)

2 )1/2

(η ∥k∥−(ρ(γ−1)+1+δ)
2 )1/γ

⩽ Cη−1/γ(Kd−(ρ−1−δ)/γ +Kd+1−(m+δ̃)/2+(ρ(γ−1)+1+δ)/γ) → 0

as K → ∞. Thus the claim follows.

In fact, the expectation of the limit distribution in Theorem 5 exerts asymptotic behavior as σ
approaches infinity. This observation is stated in Theorem 3.

Proof of Theorem 3. Observe first that by Fubini’s theorem and standard properties for the normal
distribution,

E
[∫

∥Gx∥2 dx

]
=

∫
E[∥Gx∥2]dx =

∫
E

√√√√ d∑
j=1

λjZ2
j

dx, (38)

where λ1(x) ⩾ λ2(x) ⩾ . . . ⩾ λd(x) are the (non-negative) eigenvalues of the covariance matrix
E[GxG

⊤
x ], and Z1, . . . , Zd are i.i.d. standard Gaussian. Let us recall two facts from linear algebra

that give upper and lower bounds on the largest eigenvalue:

(a) Since Tr(E[GxG
⊤
x ]) =

∑d
j=0 λj(x),

λ1(x) ⩾
1

d
Tr(E[GxG

⊤
x ]) =

1

d

∑
1⩽j⩽d

E[(Gx)
2
j ] =

1

d
E

[
d∑

i=1

(
Yi −Xi

)2
fξ,σ(x−X)2

]
. (39)

(b) By the Gershgorin circle theorem (Theorem 6.1.1 of [28]),

λ1(x) ⩽ max
1⩽i⩽d

∑
1⩽j⩽d

|E[(Gx)i(Gx)j ]| ⩽ E

[( d∑
i=1

|Yi −Xi|
)2
fξ,σ(x−X)2

]
. (40)

We first prove the lower bound, where it follows from (38) and (39) that

E
[∫

∥Gx∥2 dx

]
⩾
∫

E[
√
λ1(x)|Z1|]dx ⩾

1

C

∫ √√√√E

[
d∑

i=1

(
Yi −Xi

)2
fξ,σ(x−X)2

]
dx.

Note that there exists C > 0 such that fξ(x/σ) ⩾ C(∥x∥2/σ)−ρ and (x−X)−2ρ1{−σ<X<σ} ⩾ σ−2ρ/C
for all x ∈ (2σ, 3σ). By (6) we then have for σ ⩾ 1 and ∥x∥2 ∈ (2σ, 3σ),

E

[
d∑

i=1

(
Yi −Xi

)2
fξ,σ(x−X)2

]
⩾ E

[
d∑

i=1

(
Yi −Xi

)2
fξ,σ(x−X)21{−σ<∥X∥2<σ}

]

⩾
σ2(ρ−d)

C
E

[
d∑

i=1

(
Yi −Xi

)2 ∥x−X∥−2ρ
2 1{−σ<∥X∥2<σ}

]

⩾
σ−2d

C
E

[
d∑

i=1

(
Yi −Xi

)2
1{−σ<∥X∥2<σ}

]
⩾
σ−2d

C
,
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where the last step follows from our assumption that
∑d

i=1(Yi−Xi)
2 is not a constant zero. Therefore,

E
[∫

∥Gx∥2 dx

]
⩾

1

C

∫
2σ⩽∥x∥2⩽3σ

√√√√E

[
d∑

i=1

(
Yi −Xi

)2
fξ,σ(x−X)2

]
dx

⩾ σd

√
σ−2d

C
⩾

1

C
.

For the upper bound, note that by (38) and (40),

E
[∫

∥Gx∥2 dx

]
⩽
∫

E[
√
λ1(x) ∥Z∥2]dx ⩽ C

∫ √√√√E

[( d∑
i=1

|Yi −Xi|
)2
fξ,σ(x−X)2

]
dx.

By (6),

E
[( d∑

i=1

|Yi −Xi|
)2
fξ,σ(x−X)2

]
⩽ Cσ−2dE

[( d∑
i=1

|Yi −Xi|
)2
1{∥x−X∥2<σ}

]

+ σ2(ρ−d)E

[( d∑
i=1

|Yi −Xi|
)2
fξ(x−X)21{∥x−X∥2>σ}

]
. (41)

First, if ∥x∥2 < 2σ,

σ−2dE
[( d∑

i=1

|Yi −Xi|
)2
1{∥x−X∥2<σ}

]

+ σ2(ρ−d)E
[( d∑

i=1

|Yi −Xi|
)2
fξ(x−X)21{∥x−X∥2>σ}

]

⩽ C

(
σ−2dE

[( d∑
i=1

|Yi −Xi|
)2]

+ σ2(ρ−d)E
[( d∑

i=1

|Yi −Xi|
)2

∥x−X∥−2ρ
2 1{∥x−X∥2>σ}

])
⩽ Cσ−2d.

This gives

∫
{∥x∥2<2σ}

√√√√E

[( d∑
i=1

|Yi −Xi|
)2
fξ,σ(x−X)2

]
dx ⩽ C

∫
{∥x∥2<2σ}

dxσ−d ⩽ C. (42)

Second, consider ∥x∥2 > 2σ. Suppose that (X,Y ) ∈ L2p and p−1 + q−1 = 1, where we may assume
p > 2. By Hölder’s inequality,

E

[( d∑
i=1

|Yi −Xi|
)2
1{∥x−X∥2<σ}

]
⩽ E

[( d∑
i=1

|Yi −Xi|
)2p]1/p

P0(∥X∥2 > ∥x∥2 − σ)1/q

⩽ C(∥x∥2 − σ)−2p/q ⩽ C ∥x∥−2p/q
2 ,

where we used that ∥X∥2 ∈ L2p and
∑

|Yi −Xi| ∈ L2p. Again by Hölder’s inequality,

E

[( d∑
i=1

|Yi −Xi|
)2
fξ(x−X)21{∥x−X∥2>σ}

]q
⩽ CE[fξ(x−X)2q1{∥x−X∥2>σ}]

⩽ CE[∥x−X∥−2qρ
2 1{∥x−X∥2>σ}].
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In addition,

E[∥x−X∥−2qρ
2 1{∥x−X∥2>σ}] =

∫ σ−2qρ

0

P0(∥x−X∥−2qρ
2 ⩾ y) dy

=

∫ σ−2qρ

0

P0(∥X − x∥2 ⩽ y−1/(2qρ)) dy

⩽
∫ σ−2qρ

2∥x∥−2qρ
2

P0(∥X∥2 ⩾ ∥x∥2 − y−1/(2qρ)) dy + 2 ∥x∥−2qρ
2

⩽ C(∥x∥−2p
2 σ−2qρ + ∥x∥−2qρ

2 ).

We conclude using (41) that

E

[( d∑
i=1

|Yi −Xi|
)2
fξ,σ(x−X)2

]
⩽ C(σ−2d ∥x∥−2p/q

+ σ2(ρ−d) ∥x∥−2ρ
).

Recall we assumed q < 2 < p. This then yields∫
{∥x∥2>2σ}

√√√√E

[( d∑
i=1

|Yi −Xi|
)2
fξ,σ(x−X)2

]
dx

⩽ C

∫
{∥x∥2>2σ}

(σ−d ∥x∥−p/q
2 + σρ−d ∥x∥−ρ

2 ) dx ⩽ C(σ−p/q + 1) ⩽ C.

(43)

Combining (42) and (43) gives the upper bound∫
E

√√√√ d∑
j=1

λjZ2
j

 dx ⩽ C,

and hence finishing the proof by (38).

A comparable limit distribution result also exists for stationary α-mixing sequences. In our
proof of Theorem 4, we follow a similar path as the proof of Theorem 5, starting from an empirical
bound. And similar to our proof for finite-sample rates in Section 4.2, we start by considering (21)
and (23). For k ∈ Rd, we let Fk = {fa}a∈Ik ∪ {0} and Fj

k = {f ja}a∈Ik ∪ {0}, where fa(x, y) =
(y − x)fξ(a − x), x, y ∈ Rd and f ja denotes the j-th component of fa for 1 ⩽ j ⩽ d. The following
lemma parallels Lemma 6 in Section 4.2.

Lemma 13. Suppose that for parameters λ > 2, p > 1, r ∈ (1, pλ − 1), and s ∈ [2,∞) ∩ ((dr −
2)/(r− 1),∞), it holds that {(Xi, Yi)}i∈N forms a stationary α-mixing sequence in Lpλ with mixing
coefficients {αn}n∈N satisfying Aα,λ < ∞. Then for some constant C(s, r) depending on s, r only
and C(s) depending on s only, we have for each k ∈ Zd such that ∥k∥2 ⩾ σ,

E
[
sup
x∈Ik

∥ξn(x)∥2

]
⩽ d
(
LC1(k) + C(s)C2(k)

1/s + (1− 2d/s−1)−1C3(k)
1/dC2(k)

(1/d−1/s)/2

+ C(s, r)C4(k)
1/(1+β)

)
, (44)

where the quantities Cj(k), 1 ⩽ j ⩽ 4 are explicitly defined in (49), (51), (52), and (55) below
respectively. In particular, there exists C > 0 independent of k and n such that for each ∥k∥2 ⩾ σ,

E
[
sup
x∈Ik

∥ξn(x)∥2

]
⩽ C ∥k∥−min(c1,c2,c3)

2 , (45)

where:
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• c1 := min(ρ(r+1), (pλ− r− 1)) is the negative exponent of ∥k∥2 for the term C1(k); see (49);

• c2 := min(ρ/s, (p− 1)/s) is the negative exponent for C2(k); see (51);

• c3 := (min(ρ+1, p−1)+( 1
2d−

v
2s )min(ρ, p−1))/(1+β) is the negative exponent for C4(k)

1/(1+β);
see (55);3

• β := −(1/r − 1)(1− 2/s) ∈ [0, 1);

• v := (1− 1
r (1−

2
s ))

−1 ∈ [1,∞).

Remark 5. For each fixed d and λ, it is possible to solve (at least numerically) for the feasible pairs
of

(p, ρ, r, s) s.t. min(c1, c2, c3) > d. (46)

It is also elementary to check that for each ρ > 2d2, with the choices p = 2d2 + 2, r = 2, s = 2d,
(p, ρ, r, s) forms a feasible pair. In other words, in the setting of Theorem 4, we may replace (45) by

E
[
sup
x∈Ik

∥ξn(x)∥2

]
⩽ C ∥k∥−(d+δ)

2 (47)

for some δ > 0.

To establish Lemma 13, the following empirical bound serves as the analogue of Lemma 5 for
α-mixing sequences. This arises from a more general result proven along the way in [25, Theorem 2
and Corollary 1], which applies to the special case of α-mixing sequences; see also [38] for relevant
literature.

Lemma 14 ([25, 38]). Let {Xi}i∈N be a stationary α-mixing sequence, and F be a class of real-valued
functions. For f ∈ F , define the norm

∥f∥2,X :=

√∫ 1

0

α−1(u)Qf (u)2du,

where Qf is the quantile of |f(X1)|. Suppose that F := supf∈F |f | ∈ Lr+1 for some r > 1 and∫ 1

0

N(x, ∥·∥2,X ,F)v/sdx <∞,

where s ⩾ 2 and v = (1− 1
r (1−

2
s ))

−1. Then for all δ > 0,

E

[
sup

f,g∈F, ∥f−g∥2,X<δ

∣∣∣∣∣ 1√
n

n∑
i=1

(f(Xi)− g(Xi))

∣∣∣∣∣
]

⩽ C(s, r)ε(δ)
1

1+β + C(s)δ1/s + C(s)

q+1∑
ℓ=q0+1

N(2−ℓ, ∥·∥2,X ,F)1/s2−ℓ

+ L
√
nE[F1F>n1/(2r) ],

(48)

where we have used the following definitions:

• q0 = q0(δ) is the largest integer with N(2−q0 , ∥·∥2,X ,F) ⩽ 1/
√
δ;

3The remaining term C3(k)1/dC2(k)(1/d−1/s)/2 carries a larger negative exponent in ∥k∥2 than the term

C4(k)1/(1+β).
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• ε(δ) =
∫ 2−q0

0
N(x, ∥·∥2,X ,F)

v/s
dx;

• q = ⌊log(nε(δ)1/(1+β))/(2 log 2)⌋+ 1;

• β = −(1/r − 1)(1− 2/s).

We also record a preliminary estimate for the last term in (48), proving that it has power decay
in k and is O(1) in n. Eventually, we will show the same for the right-hand side of (48).

Lemma 15. In the above setting, suppose that F = F j
k and (X,Y ) ∈ Lpλ, then for 1 < r < pλ− 1,

there exists C > 0 independent of n, k such that supf∈Fj
k
|f | ∈ Lr+1 and

√
nE[F1F>n1/(2r) ] ⩽ C1(k) ⩽ C

(
∥k∥−ρ(r+1)

2 + ∥k∥−(pλ−r−1)
2

)
,

where F = F j
k = supf∈Fj

k
|f | and C1(k) is defined in (49) below.

Proof. We first estimate E[|F |r+1]. Recall from (29) that |F (x, y)| ⩽ g̃jk(x, y) and hence using
Hölder’s and Markov’s inequalities with q′ = pλ/(r + 1) and p′ being conjugates (similarly as the
derivation of (32)),

E[|F |r+1]

⩽ E

[( g̃jk(X,Y )

|Xj − Y j |

)(r+1)p′
]1/p′

E[|Xj − Y j |(r+1)q′ ]1/q
′

⩽
(
|fξ(k/2)|(r+1)p′

+ (Cρσ
−d)(r+1)p′

E[∥X∥λp2 ](∥k∥2 /2)
−λp
)1/p′

E[|Xj − Y j |pλ]1/q
′

⩽

(
(
∥k∥
2σ

+ 1)−ρ(r+1) + E[∥X∥λp2 ]1/p
′
(
∥k∥2
2

)−(pλ−r−1)

)
(Cρσ

−d)r+1E[|Xj − Y j |pλ]1/q
′

=: C1(k). (49)

In particular, this shows F ∈ Lr+1. Now, using again Hölder’s and Markov’s inequalities,

√
nE[F1F>n1/(2r) ] ⩽

√
n ∥F∥r+1 P(F > n1/(2r))r/(r+1)

⩽
√
n ∥F∥r+1 n

−1/2E[|F |r+1]r/(r+1)

⩽ E[|F |r+1] ⩽ C1(k).

It follows from definition that

C1(k) ⩽ C
(
∥k∥−ρ(r+1)

2 + ∥k∥−(pλ−r−1)
2

)
.

The proof is then complete.

Proof of Lemma 13. First, by mean-value theorem, for any a, b ∈ Rd and 1 ⩽ j ⩽ d we have

|f ja(x, y)− f jb (x, y)| ⩽ C5|xj − yj | ∥a− b∥2 sup
t∈[a,b]

(
∥t− x∥2

σ
+ 1

)−(ρ+1)

,

where C5 = ρCρσ
−(d+1). By Markov’s and Hölder’s inequalities, with (p, q) denoting a conjugate
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pair, for ∥k∥2 > 10, a, b ∈ Ik, and λ > 0,

P[|f ja(X,Y )− f jb (X,Y )| > s]

⩽ P
[
C5 ∥a− b∥2 |X

j − Y j | sup
t∈Ik

(∥t−X∥2 + 1)−(ρ+1) > s

]
⩽ Cλ

5 ∥a− b∥λ2 s
−λE

[
|Xj − Y j |λ sup

t∈Ik

(
∥t−X∥2

σ
+ 1

)−(ρ+1)λ
]

⩽ Cλ
5 ∥a− b∥λ2 s

−λE[|Xj − Y j |pλ]1/pE

[
sup
t∈Ik

(
∥t−X∥2

σ
+ 1

)−(ρ+1)qλ
]1/q

⩽ Cλ
5 ∥a− b∥λ2 s

−λ
∥∥Xj − Y j

∥∥λ
pλ

(
(
∥k∥2
2σ

)−(ρ+1)λ + E[∥X∥pλ2 ]1/q(
∥k∥2
2

)−pλ/q

)
,

where the last step follows in a similar way as the derivation of (32), given that (X,Y ) ∈ Lpλ. Recall
that Qf is the quantile of |f(X1)|. As a consequence, for a, b ∈ Ik,

Qfj
a−fj

b
(u)

⩽ C5 ∥a− b∥2
∥∥Xj − Y j

∥∥
pλ
u−1/λ

(
(
∥k∥2
2σ

)−(ρ+1)λ + E[∥X∥pλ2 ]1/q(
∥k∥2
2

)−pλ/q

)1/λ

.

In particular, for A,B ∈ Ik with A < B,

sup
a,b∈[A,B]

Qfj
a−fj

b
(u)

⩽ C5 ∥A−B∥2
∥∥Xj − Y j

∥∥
pλ
u−1/λ

(
(
∥k∥2
2σ

)−(ρ+1)λ + E[∥X∥pλ2 ]1/q(
∥k∥2
2

)−pλ/q

)1/λ

. (50)

Moreover, for a ∈ Ik,

P[|f ja(X,Y )| > s]

⩽ P

[
Cρρ

−d|Xj − Y j | sup
t∈Ik

(
∥t−X∥2

σ
+ 1

)−ρ

> s

]

⩽ s−λE

[
(Cρρ

−d)λ|Xj − Y j |λ sup
t∈Ik

(
∥t−X∥2

σ
+ 1

)−ρλ
]

⩽ (Cρρ
−d)λE[|Xj − Y j |pλ]1/ps−λE

[
sup
t∈Ik

(
∥t−X∥2

σ
+ 1

)−ρqλ
]1/q

⩽ (Cρρ
−d)λE[|Xj − Y j |pλ]1/ps−λ

(
(
∥k∥2
2σ

)−ρλ + E[∥X∥pλ2 ]1/q(
∥k∥2
2

)−pλ/q

)
.

This implies (recalling that Fk = {fa}a∈Ik ∪ {0})

sup
f,g∈Fk

Qfj−gj (u)

⩽ LCρρ
−d
∥∥Xj − Y j

∥∥
pλ

(
(
∥k∥2
2σ

)−ρλ + E[∥X∥pλ2 ]1/q(
∥k∥2
2

)−pλ/q

)1/λ

u−1/λ.
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Since Aα,λ <∞, we have by definition,

δjk := sup
f,g∈Fk

∥∥f j − gj
∥∥
2,X

⩽ LCρρ
−d
∥∥Xj − Y j

∥∥
pλ

(
(
∥k∥2
2σ

)−ρλ + E[∥X∥pλ2 ]1/q(
∥k∥2
2

)−pλ/q

)1/λ

Aα,λ = C2(k). (51)

In addition, (50) implies that for A,B ∈ Ik with A < B,

sup
a,b∈[A,B]

∥∥∥f ja − f jb

∥∥∥
2,X

⩽ C5 ∥A−B∥2
∥∥Xj − Y j

∥∥
pλ
Aα,λ

(
(
∥k∥2
2σ

)−(ρ+1)λ + E[∥X∥pλ2 ]1/q(
∥k∥2
2

)−pλ/q

)1/λ

.

Therefore,

N(x, ∥·∥2,X ,Fk)

⩽ L

(
x−1

√
dC5

∥∥Xj − Y j
∥∥
pλ
Aα,λ

(
(
∥k∥2
2σ

)−(ρ+1)λ + E[∥X∥pλ2 ]1/q(
∥k∥2
2

)−pλ/q

)1/λ
)d

=: x−dC3(k). (52)

In particular,
∫ 1

0
N(x, ∥·∥2,X ,Fk)

v/s dx <∞ for s > dv.

Next we compute q0(δ
j
k) and ε(δjk). First, by definition of q0(δ

j
k), N(2−q0 , ∥·∥2,X ,Fk) ⩽

(δjk)
−1/2 ⩽ N(2−q0−1, ∥·∥2,X ,Fk). Using (52), we have

(δjk)
−1/2 ⩽ N(2−q0−1, ∥·∥2,X ,Fk) ⩽ 2d(q0+1)C3(k).

This in turn yields

2q0+1 ⩾ (C3(k)(δ
j
k)

1/2)−1/d (53)

and thus
2−q0 ⩽ C3(k)

1/d(δjk)
1/(2d).

Using (51), (52), and (53), we obtain

ε(δjk) =

∫ 2−q0

0

N(x, ∥·∥2,X ,Fk)
v/s dx (54)

(52)

⩽
∫ 2−q0

0

(x−dC3(k)))
v/sdx

= C3(k)
v/s(1− dv

s
)−12−q0(1−(dv)/s)

(53)

⩽ (1− dv

s
)−1C3(k)

1/d(δjk)
1
2d (1−

dv
s )

(51)

⩽ (1− dv

s
)−1C3(k)

1/dC2(k)
1
2d−

v
2s =: C4(k). (55)
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In addition, we compute using (52) and (53) that

q+1∑
ℓ=q0+1

N(2−ℓ, ∥·∥2,X ,F)1/s2−ℓ
(52)

⩽
q+1∑

ℓ=q0+1

C3(k)
1/s2−ℓ+ℓd/s

(53)

⩽ (1− 2d/s−1)−1C3(k)
1/s(C3(k)(δ

j
k)

1/2)1/d−1/s

(51)

⩽ (1− 2d/s−1)−1C3(k)
1/dC2(k)

(1/d−1/s)/2. (56)

Combining (51), (55), (56), Lemma 15, and choosing δ = δjk in Lemma 14 yields

E

[
sup

f,g∈Fk

∣∣∣∣∣ 1√
n

n∑
i=1

(f j(Xi, Yi)− gj(Xi, Yi))

∣∣∣∣∣
]

⩽ C(s, r)C4(k)
1/(1+β) + C(s)C2(k)

1/s + (1− 2d/s−1)−1C3(k)
1/dC2(k)

(1/d−1/s)/2 + LC1(k),

The proof of (44) is then complete by noting that

E
[
sup
x∈Ik

|ξjn(x)|
]
= E

[
sup
f∈Fk

∣∣∣∣∣ 1√
n

n∑
i=1

(f j(Xi, Yi)− E[f j(Xi, Yi)])

∣∣∣∣∣
]

⩽ E

[
sup

f,g∈Fk

∣∣∣∣∣ 1√
n

n∑
i=1

(f j(Xi, Yi)− gj(Xi, Yi))

∣∣∣∣∣
]
,

which follows since 0 ∈ Fk. That (45) is straightforward to verify by choosing the smallest (negative)
powers of ∥k∥2 in (44), and noting that p/q = p− 1.

Proof of Theorem 4. The proof mimics that of the case (i) of Theorem 5, so we only give a sketch
here. Note first that Lemma 8 generalizes to the α-mixing case using the main result of [18], given
our assumption Aα,λ < ∞. On the other hand, the analogue of Lemma 9 (with γ = 1) follows by
replacing Lemma 6 by (45) of Lemma 13 along with (47) of Remark 5. Therefore, Theorem 4 then
follows from the analogues of Lemmas 8 and 9 just as in Section 2.2.

4.4 Generalized smoothing kernel revisited

We will revisit the proof of our main results for both the finite-sample case and the asymptotic
case for the general fξ. We begin with a walk through the methodological development of Proposition
3 for the finite-sample case. We start with the following lemma:

Lemma 16. Under Assumption 1 there exists C = C(β, δ, d, r,D) such that

logN[ ](ε,Fr
j , L2(µ)) ⩽ C

(1
ε

)2−δ

.

Proof. We want to apply Corollary 2.7.4 of [46] with α = 2d/(2−δ) for δ ∈ (0, 1), V = 2−δ ⩾ (2d)/β.
We first calculate derivatives: note that for i1, j = 1, . . . , d

∇yi1
fra(x, y)j = (1 ∨ ∥a∥r2)fξ(a− x)1{i1=j};

∇xi1
fra(x, y)j = −(1 ∨ ∥a∥r2)[fξ(a− x)1{i1=j} + (yj − xj)∇xi1

fξ(a− x)].
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In particular, since all the other derivatives are identically zero, we only need to consider

∇k
xi2

...xik+1
∇yi1

fra(x, y)j = (1 ∨ ∥a∥r2)(−1)k∇k
xi2

...xik+1
fξ(a− x)1{i1=j};

∇k+1
xi1

...xik+1
fra(x, y)j = (−1)k+1(1 ∨ ∥a∥r2)

(
∇k

xi2
...xik+1

fξ(a− x)1{i1=j}

+ (yj − xj)∇k+1
xi1

...xik+1
fξ(a− x)

+
∑
il=j

∇xi1 ...xil−1
xil+1

xik+1
fξ(a− x)

) (57)

for k ⩾ 0, i1, . . . , ik+1, j ∈ {1, . . . , d}. Next, as ∥a∥r2 ⩽ 2r−1(∥a− x∥r2 + ∥x∥r2) we conclude that

(1 ∨ ∥a∥r2) ⩽ 2r−1(1 ∨ ∥a− x∥r2 + 1 ∨ ∥x∥r2).

Using the above we obtain for j = 1, . . . , d,

|fra(x, y)j | ⩽ (1 ∨ ∥a∥r2)|yj − xj ||fξ(a− x)|
⩽ 2r−1(1 ∨ ∥a− x∥r2 + 1 ∨ ∥x∥r2)|yj − xj ||fξ(a− x)|.

Recall that by Assumption 1 we have

∥a− x∥r2|fξ(a− x)| ∨ |fξ(a− x)| ⩽ C

for all x, a ∈ Rd. Thus

2r−1(1 ∨ ∥a− x∥r2 + 1 ∨ ∥x∥r2)|yj − xj ||fξ(a− x)| ⩽ C(1 + ∥x∥r2)|yj − xj |.

In conclusion,

|fra(x, y)j | ⩽ C(1 + ∥(x, y)∥r+1
2 ).

Using (57) and similar arguments we obtain

∥∇k
x,yf

r
a(x, y)j∥∞ ⩽ C(1 ∨ ∥a− x∥r2 + 1 ∨ ∥x∥r2) max

1⩽l⩽k
∥∇l

x,yfξ(a− x)∥∞(1 + |yj − xj |)

⩽ C(1 + ∥x∥r2)(1 + |yj − xj |)
⩽ C(1 + ∥(x, y)∥r+1

2 )

(58)

for all k ⩾ 1 and j ∈ {1, . . . , d}.
We now compute the bracketing number. Consider a partition Rd × Rd = ∪∞

j=1Ij into cubes of

side length one. Let Km be the collection of j ⩾ 1 such that Ij is in the annulus {x ∈ Rd × Rd :
m− 1 ⩽ ∥x∥∞ ⩽ m}. Then

|Km| = (2m)2d − (2(m− 1))2d ⩽ 4d(2m)2d−1.

Next, if j ∈ Km, then by (58) all derivatives above are bounded by Sj := C(1+m1+r). Furthermore,
if j ∈ Km, then by Markov’s inequality for m > 1

µ(Ij) ⩽ µ( ∥(X,Y )∥∞ ⩾ m− 1) ⩽
E[∥(X,Y )∥s∞]

(m− 1)s
.

Recall that by Corollary 2.7.4 of [46] we have

logN[ ](ε,Fr
j , L2(µ))

⩽ C(α, V )
(1
ε

)V ( ∞∑
j=1

S
2V

V +2

j µ(Ij)
V

V +2

)V +2
2

⩽ C(α, δ, d)
(1
ε

)2−δ(
1 +

∞∑
m=2

(2m)2d−1(1 +m1+r)
4−2δ
4−δ

(E[∥(X,Y )∥s∞]

(m− 1)s

) 2−δ
4−δ
) 4−δ

2

.
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Noting that (4 − 2δ)/(4 − δ) ⩽ 1 and (2 − δ)/(4 − δ) ⩾ 1/2 − δ/4, we conclude that the above is
bounded by

C(α, δ, d)
(1
ε

)2−δ(
1 +

∞∑
j=1

m2d−1+1+r−s(1/2−δ/4)
) 4−δ

2

.

It thus suffices to check when
∞∑
j=1

m2d−1+1+r−s(1/2−δ/4) <∞;

this is the case if

s >
1 + 2d+ r

1/2− δ/4
> 4(1 + 2d+ r).

This concludes the proof in view of Assumption 1.

Corollary 3. For any n ∈ N,

√
nE
[
sup
f∈Fr

j

|EPn [f ]− EP0 [f ]|
]
⩽ C

∫ C
(
1+E
[
∥(X,Y )∥2(r+1)

2

])
0

√
logN[ ](ε,Fr

j , L2(µ)) dε

⩽ C

∫ C
(
1+E
[
∥(X,Y )∥2(r+1)

2

])
0

(1
ε

)1−δ/2

dε,

where C = C(β, δ, d, r,D).

Proof. This follows from combining Lemma 16 and Corollary 19.35 of [46], noting in particular that
by (58),

sup
f∈Fr

j

|f(X,Y )|2 ⩽ C(1 + ∥(X,Y )∥r+1
2 )2

and thus

E
[
sup
f∈Fr

j

|f(X,Y )|2
]
⩽ CE

[
(1 + ∥(X,Y )∥r+1

2 )2
]
⩽ C

(
1 + E

[
∥(X,Y )∥2(r+1)

2

])
<∞

as 2(r + 1) < s.

We are now in a position for the proof of Proposition 3.

Proof of Proposition 3. Recall from (24) that

√
nEn [∥X − En[Y |X]∥2] =

∫
Rd

∥∥ 1√
n

n∑
i=1

(Yi −Xi)fξ (x−Xi)
∥∥
2
dx.

Using Tonelli’s theorem and Corollary 3 we conclude
√
nE
[
En [∥X − En[Y |X]∥2]

]
= E

[∫
Rd

∥∥ 1√
n

n∑
i=1

(Yi −Xi)fξ (x−Xi) (1 ∨ ∥x∥r2)
∥∥
2
(1 ∨ ∥x∥r2)−1 dx

]

=

∫
Rd

E
[∥∥ 1√

n

n∑
i=1

(Yi −Xi)fξ (x−Xi) (1 ∨ ∥x∥r2)
∥∥
2

]
(1 ∨ ∥x∥r2)−1 dx

⩽ L sup
1⩽j⩽d

E
[√

n sup
f∈Fr

j

|EPn [f ]− EP0 [f ]|
] ∫

Rd

(1 ∨ ∥x∥r2)−1 dx

⩽ C

∫ C
(
1+E
[
∥(X,Y )∥2(r+1)

2

])
0

(1
ε

)1−δ/2

dε.
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This completes the proof.

We now walk through the proof of our main asymptotic result, Proposition 4, for general fξ. We
will first prove a lemma that follows from a classical Donsker theorem.

Lemma 17. Under Assumption 1, the class Fr
j is Donsker for j ∈ {1, . . . , d}.

Proof. We apply Example 2.10.25 of [47]. We use the same notation as in the proof of Lemma 16.
We need to check that for β > d/2 we have

∞∑
j=1

Sjµ(Ij)
1/2 <∞,

where we recall that Sj = C(1 +m1+r) and

µ(Ij) ⩽ µ(∥(X,Y )∥∞ ⩾ m− 1) ⩽
E[∥(X,Y )∥s∞]

(m− 1)s
.

Arguing as in the proof of Lemma 16 we need to have

∞∑
j=1

m2d−1+1+r−s/2 <∞;

this is satisfied for s > 2(2d+ 1 + r). The claim follows.

We are now ready to prove Proposition 4.

Proof of Proposition 4. Recall that

√
nEn [∥X − En[Y |X]∥2] =

∫
Rd

∥ 1√
n

n∑
i=1

(Yi −Xi)fξ (x−Xi) ∥2 dx.

Define the functional I : Cb(Rd) → R via

I(g) =

∫
Rd

g(x)(1 ∨ ∥x∥r2)−1 dx.

Taking two bounded continuous functions f, g we have

|I(f)− I(g)| ⩽ ∥f − g∥∞
∫
Rd

(1 ∨ ∥x∥r2)−1dx ⩽ L∥f − g∥∞

by Hölder’s inequality; in conclusion, I is continuous in ℓ∞-norm. Writing

√
nEn [|X − En[Y |X]|] =

∫
Rd

∥∥ 1√
n

n∑
i=1

(Yi −Xi)fξ (x−Xi) (1 ∨ ∥x∥r2)
∥∥
2
(1 ∨ ∥x∥r2)−1 dx,

the claim follows from the continuous mapping theorem and the fact that Fr
j is Donsker, see Lemma

17. This concludes the proof.

5 Experiments and Applications

In this section, we study the power of our test based on simulated data and discuss a few
applications. This analysis is classical in the context of non-parametric tests.
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5.1 Power analysis

Given a significance level α, we begin by examining the asymptotic critical values cα with γ = 1
for dimensions d = 1, 2.

5.1.1 Asymptotic distribution

In this section, we simulate the distribution of
∫
Rd ∥Gx∥2 dx in (7) for (X,Y ) ∈ Rd ×Rd defined

via
X ∼ N (0, Id), Z ∼ N (0, Id), Y = X + Z,

where Id denotes the d×d identity matrix. We refer to the Appendix B for the deferred pseudo-codes.
Figures 1 and 2 show the histograms of

∫
Rd ∥Gx∥2dx, where we have taken 100 observations from

the martingale coupling (X,Y ) and a replication size of 1000 over the grid of [−50, 50]d for d = 1, 2
respectively. For all histograms, we choose ρ = 5 and σ = 1.

Figure 1: Asymptotic distribution for d = 1

Figure 2: Asymptotic distribution for d = 2

Given different significance levels, we obtain the asymptotic critical values of test statistics:
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Sig. Level Dimension 1 Dimension 2

0.99 1.84 1.604
0.95 1.485 1.964
0.90 1.717 2.199
0.10 4.102 4.419
0.05 4.705 4.840
0.01 5.740 5.835

Table 1: Critical Values for Different Significance Levels

5.1.2 Simulation evidence

Given two observed sequences of random variables X,Y , let H0 be the hypothesis that (X,Y )
forms a martingale coupling, i.e. E[Y |X] = X. We draw n = 100 samples from each of the distribu-
tions and conduct N = 100 replications to obtain the asymptotic size of the test. To see if our test is
consistent, we consider the following test cases with α = 0.05. Recall that the Hermite polynomial
of order k is defined as Hk(x) = (−1)kex

2/2dk/dxk(e−x2/2).

• Random Walk (NULL1): X ∼ N (0, 1), Z ∼ N (0, 1), Y = X + Z.

• Hermite Polynomials (ALT1): X ∼ N (0, 1), Y = X +Hk(X)/
√
k!, where k = 1.

• Hermite Polynomials (NULL2): X ∼ N (0, 1), Y = X +Hk(X)/
√
k!, where k = 20.

Note that if Z is standard Gaussian then E[Hk(Z)Hℓ(Z)] = 0 when k ̸= ℓ. If we let (X,Y ) =
(Z,Z + Hk(Z)), then E[(Y − X)Xj ] = 0 for all j = 0, . . . , k − 1, and E[(Y − X)Xk] ̸= 0. The
normalized version is E[Y 2] = E[(Z+Hk(Z))

2] = 1+E[Hk(Z)
2] ≍ k!, so we take Y = Z+Hk(Z)/

√
k!

instead. The results are summarized in Table 1, where p denotes the empirical rejection rate and T̄
represents the mean of the test statistic.

α N n p T̄

NULL1 0.05 100 100 0.00 1.643
ALT1 0.05 100 100 1.00 7.318
NULL2 0.05 100 100 0.01 1.804

Table 2: Simulation Results with ρ = 5, σ = 1

5.1.3 The impact of σ

The parameter σ plays an important role in our test. Varying values of σ can have the following
effects:

(1) martingales are smoothed to different degrees;

(2) martingale projection error is reduced at different rates;

(3) the associated critical values change.

To see the smoothing effect of σ, consider a simple example of a martingale coupling (B1, B2) where
{Bt}t⩾0 is a Brownian motion. Figure 3 illustrates the impact of σ = 0.01, σ = 0.1, and σ = 1 in
smoothing martingale with 100 samples.
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(a) σ = 0.01 (b) σ = 0.1 (c) σ = 1

Figure 3: Effects of various σ in smoothing a martingale coupling

In regards to (2), in general, the larger the value of σ, the faster the rate at which the martingale
projection error is reduced, as shown in Figure 4 below. Here, we consider the same simple example
of martingale coupling (B1, B2) as in (1), and each graph plots 100 times the number of Monte-
Carlo simulations we conduct (x-axis) against the resulting martingale projection error (y-axis)
given different values of σ.

(a) σ = 0.1 (b) σ = 1 (c) σ = 2

Figure 4: Effects of σ in reducing projection error

For (3), as stated in Theorem 3, given a fixed significance level α, the mean of the Gaussian
random field integral decreases to ≍ 1 if σ increases. Hence, the critical value is reduced. The
augmented table below gives the simulated asymptotic critical values for d = 1 and 1000 replications
with ρ = 5 and σ = 0.01, 1, 100 with Hermite couplings of varying degree k.
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α σ cα k N n p T̄

0.05 0.01 15.006 1 100 100 0.00 10.000
0.05 1.00 4.705 1 100 100 1.00 7.318
0.05 100.00 1.980 1 100 100 1.00 10.000
0.05 0.01 15.006 5 100 100 0.00 3.781
0.05 1.00 4.705 5 100 100 0.10 3.910
0.05 100.00 1.980 5 100 100 1.00 3.982
0.05 0.01 15.006 10 100 100 0.00 2.778
0.05 1.00 4.705 10 100 100 0.00 2.733
0.05 100.00 1.980 10 100 100 0.98 2.639
0.05 0.01 15.006 15 100 100 0.00 2.106
0.05 1.00 4.705 15 100 100 0.00 2.183
0.05 100.00 1.980 15 100 100 0.45 2.078
0.05 0.01 15.006 20 100 100 0.00 1.813
0.05 1.00 4.705 20 100 100 0.01 1.804
0.05 100.00 1.980 20 100 100 0.08 1.747

Table 3: Simulation results for Hermite couplings with ρ = 5 and various σ

Immediately, we see that the choice of σ has a significant influence on the power of the test. In
general, the smaller the σ, the more lenient the test is (that is, the more likely the test is to commit
Type I error). On the contrary, the larger the σ, the stricter the test is, so the more likely the test is
to commit Type II error. This trade-off is illustrated by Figure 5, which plots the empirical rejection
rate computed for a total of 10, 000 trials against different values of sigma on non-martingale example
ALT1 with k = 5.

(a) rejection rate vs σ (b) critical value vs σ

Figure 5: Effects of σ on the power of test

While the power of the test decreases slightly from σ = 1 to σ = 20, it increases consistently as
σ increases from 20, with the biggest improvement taking place at σ = 60.

5.1.4 Power curves for d = 1

In this section, we plot the power curve with respect to a series of perturbed martingale couplings.
We use ρ = 5, σ = 80 to conduct the tests.
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• Model 1: Let X ∼ N (0, 1), Z ∼ N (0, 1), Y = X + Z + ε, where ε ∈
{−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}.

• Model 2: X ∼ N (0, 1), Y = X +Hk(X)/
√
k!, where k = 1, 4, 7, 10, 13, 16, 19, 22, 25.

Taking 1000 observations and using a replication size of 1000, we obtain the power curves for
Model 1 in Figure 6 and Model 2 in Figure 7.

(a) Rejection rate vs perturbation (b) Mean test statistics vs perturbation

Figure 6: Model 1

(a) Rejection rate vs k (b) Mean test statistics vs k

Figure 7: Model 2

5.2 Applications

Our hypothesis test for martingality provides valuable information in a wide range of areas
of interest. For instance, it is well-known that martingales form an important pillar in financial
economics and econometrics. For example, no-arbitrage conditions are equivalent in great generality
to requiring the existence of a suitable probability measure under which discounted price processes
follow martingale dynamics. Our results, therefore, can be used (as we shall illustrate) to test the
no-arbitrage hypothesis in generative AI models.

A classical problem in econometrics and statistics consists of testing if a real-valued data set
follows a given continuous distribution. The Kolmogorov-Smirnov statistic is a non-parametric
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approach to testing this hypothesis. A natural generalization of this problem consists of testing if
a positive recurrent and irreducible general state-space Markov chain with stationary distribution
ϕ, {Wn : n ⩾ 0}, follows the transition kernel {K (x, ·) : x ∈ S}. This is true if and only if for
all continuous and bounded functions u (·) we have (Xn, Yn) = (Wn,Wn + u (Wn+1)− (Ku) (Wn))
forms a martingale pair for almost every Wn with respect to ϕ. Therefore, this hypothesis can be
tested by selecting a family of functions u1, . . . , ud and testing the martingale property for the pair
of d-dimensional vectors (Xn, Yn) ∈ Rd × Rd, where Xn (i) = Wn and Yn (i) = Wn + ui (Wn+1) −
(Kui) (Wn).

4

The above two applications of our test will be respectively detailed in this section below and
Appendix A. There are numerous other applications of martingale pair tests in the sphere of fin-
ance, econometrics, reinforcement learning, and non-parametric regression. We briefly discuss a few
instances below.

In the context of model-based reinforcement learning, a simulation environment generated ac-
cording to a suitable family of Markov kernels Kθ (indexed by a parametric family of policies
encoded by the parameter θ) can be used to train an optimal control policy for the task at hand
and an associated optimal value function v, which solves a corresponding HJB equation. A suitable
transformation of the value function v (similar to that discussed in the previous paragraph for u) can
be obtained based on its associated HJB equation to define a pair (Xn, Yn) following a martingale
sequence in the optimized simulation environment. If the simulated environment closely reflects the
true environment, our results can be used to test if such a policy generates the desired performance
(i.e. the predicted value v) in a real environment by applying the policy and also transformation
in the real environment, collecting the generated data in an experiment in the true environment,
and testing the martingale hypothesis in the data collected by the use of the policy in the true
environment.

Other applications include assessing the quality of a non-parametric regression function. Suppose
that a non-parametric estimator of g(Z) = E[Y |Z] based on observations (Zi, Yi) : i ⩽ n is produced.
Now consider the problem of evaluating the quality of such a non-parametric estimator, say f0. We
may consider defining X = f0(Z) and then testing whether the corresponding empirical measure
Pn of pairs (Xi, Yi) = (f0(Zi), Yi) is sufficiently close to the martingale space. Moreover, as we
shall explain, the power analysis of the martingale projection test also provides insight into how the
martingale property fails to be satisfied. This may suggest a way to improve regression estimation
training.

5.2.1 Testing no-arbitrage in neural SDE-based European option calibration

One application of our results is a test for arbitrage opportunities in existing pricing models for
financial derivatives. In the following, we first describe the set-up of the financial market considered
and then outline our methodology.

The work of [21] develops a neural SDE-based European option calibration method. In their
set-up, the true dynamics of X under the risk-neutral measure Q = Q(θ) are given by

dXθ
t = b(t,Xθ

t , θ)dt+ σ(t,Xθ
t , θ)dWt (59)

for functions b : R+ × Rd ×Θ → Rd and σ : R+ × Rd ×Θ → Rd×n, where Θ ⊆ Rp for some p > 0.
In order to calibrate asset prices consistently with the real-world measure P(θ), [21] introduces

a feed-forward neural network trained on market data, given by ζ : [0, T ]× Rd × Rp → Rn. Let dK
represent the discounted payoff of a call option with strike K. The authors assume that the call
prices at time zero

p(dK) := EQ(θ)[dK ] = e−rTEQ(θ)
[
(ST −K)+ | S0 = 1

]
(60)

4The choice of ui’s may depend on K. This is beyond the scope of our focus here.
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are given, and they calibrate (59) to p(dK) through finding θ∗ such that

e−rTEQ(θ∗)
[
(ST −K)+ | S0 = 1

]
≈ p(dK).

Importantly, [21] only calibrates to call prices at time zero and does not take any other market
data into account. In practice however, it is reasonable to assume that, next to the price process
(St)t∈{0,...,T}, one should also be able to observe the corresponding option prices

p(dK , St) = e−rTEQ(θ)
[
(ST −K)+ | St

]
(61)

for t ∈ {0, . . . , T} instead. Armed with our martingale pair test, we will check if the calibration
procedure of [21] is consistent with the additional prices given in (61). In other words, does

p(dK , St) ≈ e−rTEQ(θ∗)
[
(ST −K)+ | St

]
?

Our objective is to test if (p(dK , St), e
−rT (ST −K)+) is a martingale coupling under Q(θ∗)

(which is necessary for (61)) for vanilla options. Our task is composed of three steps:

1. Calibrate asset prices for each time-step following the algorithms of [21]. Obtain N calibrated
stock trajectories {St}t∈[0,...,T ].

2. Given a stock trajectory {St}t∈[0,...,T ] from step one, use Monte Carlo simulation to obtain
prices of vanilla options p(dK , St) at each t ⩾ 0 using (61).

3. Apply the martingale pair test to check if (p(dK , St), e
−rT (ST −K)+) is a martingale coupling

under Q(θ∗).

The work of [21] used two market models for calibration: the local stochastic volatility model (LSV)
and the local volatility model (LV). For step one, we alter the training algorithm of [21] for both
LSV and LV models to return N = 4000 calibrated stock trajectories {(St)

i
t∈[0,...,T ]}

N
i=1 directly.

The altered codes, along with the implementation codes can be found on GitHub. For step two,
for each stock trajectory {St}t∈{0,...,T}, we use Monte Carlo simulation to generate n = 1000 asset
price paths using the true Heston model approximated via a tamed Euler scheme at each time point
t ∈ {0, ..., T}:

dSt = rStdt+ St

√
VtdWt, X0 = x0

dVt = κ(µ− Vt)dt+ η
√
VtdBt, V0 = v0

d⟨B,W ⟩t = ρdt.

We use the same set of parameters as [21]: θ = {x0 = 1, r = 0.025, V0 = 0.04, κ = 0.78, µ = 0.11, η =
0.68, ρ = 0.044}. We then calculate the associated discounted European option prices with each
maturity T and strike K by

p(dK , St) := e−rTEQ(θ)[(ST −K)+|St]

In addition, we also calculate the calibrated payoff using [21]’s formula in (60). The algorithm is in
Appendix B.

For the final step, we conduct a martingale pair test of the coupling (p(dK , St), e
−rT (ST −K)+)

fixing σ = 1, ρ = 5 and a significance level of α = 0.05. We adapt the testing procedures outlined in
Algorithm 2. Codes for the martingale pair test can be found on our GitHub.

We find that, both for LV-model-based calibration and LSV-model-based calibration,
(p(dK , St), e

−rT (ST −K)+) do not form martingales. For the LV model and the LSV model, the
test statistics are 17.242 and 11.714 respectively, against an α = 0.05 critical value cα = 4.705.
In conclusion, [21]’s calibration method is shown to be inconsistent with the market data available.
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We also observe that one of the [21]’s key contributions using hedging strategy as a control
variate for the calibration model fails to work when we examine option prices as a function of the
stock price observed at each time point. Instead, to avoid creating arbitrage opportunities in option
prices (61), we propose the following neural SDE-based option calibration method: as before, the
market data (input data) is represented by (discounted) payoffs {dKi

}Mi=1 of liquid derivatives and
their corresponding market prices {p(dKi)}Mi=1. We then replace the loss function [21, equation (2.5)]
by a martingale projection loss criterion:

θ∗ ∈ arg minθ∈Θ

M∑
j=1

N∑
i=1

∫ (
(p(dKj , S

θ
ti)− dKj(S

θ
ti+τ ))fξ(x− dKj(S

θ
ti+τ ))

)2
dx.

The tentative new algorithm described by the pseudo-code can be found in Appendix B.

Appendix A Testing concurrence of a Markov chain with
given transition kernel

We consider the problem of testing if an ergodic sequence follows a particular Markov chain
dynamics. This problem is the analogue to the problem of testing if an i.i.d. sequence follows a
particular distribution. In the one-dimensional i.i.d. setting, the Kolmogorov-Smirnov test provides
a well-known approach.

Precisely, we are interested in testing if a ϕ-irreducible and positive recurrent Markov chain
sequence {Wn : n ⩾ 0} taking values on a state-space S (e.g. the support of ϕ, which may be assumed
to be a maximal irreducible measure) follows a particular transition kernel, {K (x, ·) : x ∈ S}. This
is true if and only if for all continuous and bounded functions u (·) we have that

(Xn, Yn) = (Wn,Wn + u (Wn+1)− (Ku) (Wn))

forms a martingale pair for almost every Wn with respect to ϕ. Indeed, if the ergodic chain satisfies
this condition we have that for all continuous and bounded functions u (·)

(Ku) (Wn) = E [u (Wn+1) |Wn]

almost everywhere with respect to the stationary measure which is a maximal irreducible measure
(see Theorems 10.0.1 and 10.1.2 in [33]).

As an application of our results in this paper, we can select a family of continuous and bounded
functions u1, . . . , ud so we can test the martingale property for the pair of d-dimensional vectors
(Xn, Yn) ∈ Rd × Rd, where

Xn (i) =Wn, Yn (i) =Wn + ui (Wn+1)− (Kui) (Wn) .

To put the discussion into context, we consider a simple Gaussian Markov process and an example
inspired by the present value process of perpetual cash flow as described in Example 2.2 of [22].

Example 8 (Gaussian Markov Process). Consider the simple case of an infinite state space Gaussian
Markov Process as the following:

Xn+1 = κXn + ξn+1,

where κ ∈ [0, 1], ξn+1 ∼ N (0, 1) for each n ∈ N.
Choosing u1(x) = x and u2(x) = x1{x>0}, we generate {(Xn, Xn+1)}1000n=1 with κ = 0.5. For a

martingale pair test with parameters {ρ = 5, σ = 1, α = 0.05}, the loss of the series of couplings is
3.091e-23 against an asymptotic cutoff value of 4.840. Hence, the test correctly accepts the series
{(Xn, Xn+1)}1000n=1 as a martingale with 95% confidence.
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Example 9 (Adapted present value process of perpetual cash flow). Consider the stochastic process

Zt = e−rt
(
Z0 +

∫ t

s=0

ersdPs

)
(62)

where t ⩾ 0, r > 0, Z0 = 0, and Pt =
∑NP,t

i=1 SP,i is a non-negative compound Poisson process with
NP,t ∼ Pois(λP ) and SP,i ∼ Γ(α, β). Choose r = 1, λP = 2 and (α, β) = (2, 3), where α denotes the
location parameter and β denotes the scale parameter.

To generate the Markov chain, we use the observation that

Zt+1 = Zt +

∫ 1

s=0

er(s−t)dPt+s.

Choosing u1(x) = x and u2(x) = x1{x>0}, we generate {(Zt, Zt+1)}1000t=1 . For a martingale pair
test with parameters {ρ = 5, σ = 1, α = 0.05}, the loss of the series of couplings is 1.036 against an
asymptotic cutoff value of 4.840. Hence, the test correctly accepts the series {(Zt, Zt+1)}1000t=1 as a
martingale with 95% confidence.

It is interesting to note that the modified version of stochastic process (62)

Zt =

∫ t

0

e−rsdPs

has financial implications. In this case, Z∞ has the following density (see [22]):

fZ∞ = α
1
2 (1+γ)γ

1
2 (1−γ)e−γz

1
2 (γ−1)Iγ−1(2

√
αγz)eαz,

where γ = λP /r and λP denotes the intensity of NP,t, and I is the modified Bessel function of the
first kind of order γ:

Iγ(x) = (
x

2
)γ

∞∑
k=0

1

k!Γ(k + γ + 1)
(
x

2
)2k.

In an actuarial context, Pt is interpreted as the surplus generating process and Z∞ represents the
present value of perpetual cash flow with respect to Pt.
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Appendix B Deferred algorithms

Algorithm 1 Simulate Asymptotic Distribution given {ρ, σ}

Input: total number of grid points n per dimension d, total number of simulations N , domain of
integration [xmin, xmax]

d, samples of martingale couplings (X,Y ), martingale projection
parameters {ρ, σ}.
Initialization: initialize grid g = {g1, . . . , gnd} based on domain of integration [xmin, xmax]

d and
number of grid points n, smoothing kernel fσ,ξ,ρ as defined in (4).

Given samples (X,Y ), grid g, and fσ,ξ,ρ:
for index i 1 : nd do

for index j 1 : nd do
Generate each entry (i, j) of the covariance matrix Mn×n of Gaussian random field {Gx}:

E[GgiG
T
gj ] = E[(Y −X)fσ,ξ,ρ(gi −X)fσ,ξ,ρ(gj −X)(Y −X)T ].

end for
end for
for index i 1 : N do

Compute a sample

Si =

∫
x∈g

∥Gx∥2dx.

end for
return {Si}Ni=1.

Algorithm 2 Martingale Pair Test

Input: Simulated asymptotic distribution {Si}Ni=1, ρ, n testing samples {(Xi, Yi)}ni=1, lower bound
l and upper bound u for integration, significance level α.
Initialization: Compute critical value cα by taking the (1− α)-th percentile of {Si}Ni=1,
smoothing kernel smoothing kernel fσ,ξ,ρ as defined in (4).

Compute martingale projection error:

Me =
1

n

∫ u

l

∥
n∑

i=1

(Yi −Xi)fσ,ξ,ρ(x−Xi)∥2dx.

if
√
nMe ⩽ cα then
return Me, True

else
return Me, False

end if
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Algorithm 3 Monte Carlo-based option pricing

Input: calibrated stock trajectories {(St)
i
t∈[0,...,T ]}

N
i=1, number of inner MC trials n, true Heston

model parameters θ∗ = {x0, r, V0, κ, µ, η, ρ}, a list of call options strike prices K, a list of sorted
maturities T = {Tmin, . . . , Tmax}, number of time steps Nsteps.
Initialization: time increment dt = 1/Nsteps

for stock path i 1: N do
for time t 1: Tmax do

Generate n Heston model-based stock trajectories {(Sθ∗

u )pu∈[0,...,Tmax−j]}
n
p=1 originating

from St at time t.
for maturity T ∈ T do

if t < T then
for strike K ∈ K do

Price the corresponding vanilla option with maturity T and strike K at time t
by taking the mean over n Monte Carlo trials:

p(dK , Sj) = e−rT 1

n

n∑
p=1

((Sθ∗

T )p −K)+

end for
end if

end for
end for

end for
for maturity T ∈ T do

for strike K ∈ K do
Price the corresponding vanilla option using

p′(dK) = e−rT 1

n

n∑
p=1

((ST )
i −K)+

end for
end for
return (p, p′)
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Algorithm 4 New Calibration to Market European Vanilla Option Prices

Input: {fξj}Mj=1 discounted option payoffs, market prices {p{fξj )}Mj=1, total number of training
epoch Nepoch, total number stock trajectories generated N , total number of time steps Nsteps.
Initialization: θ = {x0, r, V0, κ, µ, η, ρ}, time increment dt = 1/Nsteps.

for epoch 1: Nepochs do

Generate N sample paths (xπ,θ,itn )
Nsteps

n=0 for i = 1, . . . , N using tamed Euler scheme on Heston
model.

During one epoch: use Adam to update θ, where

θ = argmin
θ∈Θ

M∑
j=1

N∑
i=1

∫ (
(p(dKj , S

θ
ti)− dKj(S

θ
ti+τ ))dK(x− dKj(S

θ
ti+τ )

)2
dx

end for
return θ for all payoffs (fξj )

Nprices

j=1 .
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logies are equal. Probability Theory and Related Fields, 178:1125–1172, 2020.

[7] Julio Backhoff-Veraguas and Gudmund Pammer. Stability of martingale optimal transport and
weak optimal transport. The Annals of Applied Probability, 32(1):721–752, 2022.
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