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Abstract

Recent studies have established a connection between the macroscopic mechanical re-
sponse of polymeric materials and the statistics of the shortest path (SP) length between
distant nodes in the polymer network. Since these statistics can be costly to compute
and difficult to study theoretically, we introduce a branching random walk (BRW) model
to describe the SP statistics from the coarse-grained molecular dynamics (CGMD) sim-
ulations of polymer networks. We postulate that the first passage time (FPT) of the
BRW to a given termination site can be used to approximate the statistics of the SP
between distant nodes in the polymer network. We develop a theoretical framework for
studying the FPT of spatial branching processes and obtain an analytical expression for
estimating the FPT distribution as a function of the cross-link density. We demonstrate
by extensive numerical calculations that the distribution of the FPT of the BRW model
agrees well with the SP distribution from the CGMD simulations. The theoretical es-
timate and the corresponding numerical implementations of BRW provide an efficient
way of approximating the SP distribution in a polymer network. Our results have the
physical meaning that by accounting for the realistic topology of polymer networks,
extensive bond-breaking is expected to occur at a much smaller stretch than that ex-
pected from idealized models assuming periodic network structures. Our work presents
the first analysis of polymer networks as a BRW and sets the framework for develop-
ing a generalizable spatial branching model for studying the macroscopic evolution of
polymeric systems.
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1. Introduction

Polymers play a vital role in technology and products of daily use due to their
wide-ranging utility. An important class of polymers is elastomers [1–3], which are
rubber-like materials that exhibit an elastic response even under high strains. The
elastic and hyperelastic behavior of these materials has been modeled across various
length scales from the continuum [4, 5] down to the microstructural scale [6, 7]. How-
ever, their inelastic response due to the bond-breaking events is not well understood.
Recently, we have shown that network analysis can be applied to coarse-grained mo-
lecular dynamics (CGMD) models to explain the experimentally observed stress-strain
hysteresis [8] in elastomers by identifying the shortest path length between distant
nodes as the governing microstructural parameter [9, 10].

The CGMD model comprises a large number of beads (to represent the polymer
chains and cross-linking ligands), and the preparation of these systems until they reach
equilibrium is a time-consuming process. Given that the macroscopic response is shown
to strongly depend on the network statistics of the shortest paths, there is an incentive
to replace expensive CGMD simulations with a probabilistic model that represents the
polymer network. Representing polymer networks as random walks and evaluating their
response under load has a long tradition in polymer theory [11]. However, the focus of
these studies has been on the conformation of individual polymer chains, and not so
much on the statistics involving the whole network topology, in our case, the shortest
path distribution.

In this paper, we discuss the statistical properties of the shortest path length (SPL,
abbreviated as SP) distribution between far-away nodes with polymer networks modeled
as branching random walks (BRWs). The SP in the polymer network corresponds to
the first passage time (FPT) of the BRW, i.e., the time taken for the BRW to reach
a prescribed sink or halt criterion. Roughly speaking, in a BRW we start from one
particle at the origin and each existing particle independently performs a random walk
until it (randomly) branches into more particles,2 according to a certain branching
rate. Here, the branching rate in the BRW corresponds to the cross-link density in the
polymeric system, and the random walk paths correspond to the polymer chains. We
also establish theoretical predictions of the FPT of the BRW. We show that the SP
distributions predicted from the CGMD simulations are consistent with the numerical
implementation of the BRW model, as well as with theoretical BRW estimates. In
particular, our theoretical results on the FPT of the BRW provide explicit formulas that
predict the mean SP from the CGMD network given the cross-link density. In addition,
we show that in the long-distance limit, the fluctuation of the FPT is asymptotically
much lower than its expected value, a property validated by CGMD simulations.

Analyzing the extremal behavior of spatial branching processes is an active area of

2The BRW describes the positions of particles evolving in time. We do not intend this evolution
to represent the time evolution of the CGMD network. Following the tradition in polymer theory, we
represent typical polymer chains as random walks, but we explicitly model the cross-link topology by
the branching mechanism.
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recent research in probability theory. Such processes include BRW and its continuous-
time sibling, the branching Brownian motion (BBM), as well as various extensions.
The literature has focused mostly on the asymptotics of the maximum and the limit
behavior near the maximum; see the works [12–15] for the case of one-dimensional
BRW and [16–20] for one-dimensional BBM, among others. Here we are interested in
branching structures in higher (e.g. 3) dimensions (that represent real physical systems),
where we mention the recent studies of [21–24] on the location of the maximum norm.
Nevertheless, we are not aware of the results regarding the FPT of spatial branching
structures in general dimensions.3 Our work provides a necessary first step towards
understanding the limit behavior of the FPT beyond dimension one.

Our theoretical results on the FPT of spatial branching processes provide expli-
cit formulas that predict the mean SP from the CGMD network given the cross-link
density. The mean SP of the polymeric system denotes how stretched the average load-
bearing polymer chain in the system is, thereby serving as an important microstructural
parameter that can describe the macroscopic response of the material. The mean SP
determines the maximum stretch that can be applied to the polymer before significant
bond-breaking events occur, thus providing a measure of the stretchability before ap-
preciable strain-induced damage. Our theoretical estimates from the spatial branching
processes show that the stretchability of polymer before bond breaking is much smaller
than estimates based on idealized, periodically repeating, network topologies, such as
in the eight-chain model [6]. Our findings demonstrate that spatial branching processes
are remarkably successful in capturing the SP statistics of polymer networks and are
highly promising in revealing the microstructural origin of the mechanical properties of
polymeric materials.

The rest of the paper is structured as follows. In Section 2, we discuss the CGMD
model that is used to obtain the equilibrated network in which the reference SP calcu-
lations are carried out. In addition, we present a high-level description of our numerical
BRW model and some of its extensions. In Section 3, we numerically analyze the FPT
of our spatial branching models and present the consistency with the SP distribution
of the CGMD network. In Section 4, we present analytic expressions for the FPT of
the BRW models. Section 5 concludes the article with discussions on several future
research directions.

2. Numerical methods

This section provides a high-level overview of the connections between the CGMD
model of polymers and BRW processes. In particular, we compare the basic features
of the CGMD and their analogs in the BRW model, which motivate extensions of the
classical BRW model. We also discuss an efficient numerical algorithm for computing
the FPT of the BRW and its extensions.

3By continuity of the trajectories, it is not hard to show that the FPT in dimension one is precisely
the inversion of the maximum.
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2.1. Coarse-grained molecular dynamics

We use the bead-spring (Kremer-Grest) model [7] for a CGMD representation of
the polymeric system. The simulations were carried out using LAMMPS [25] where the
initial configuration of Nc = 500 chains comprising lc = 500 beads each (250,000 beads
in total) is generated as a self-avoiding random walk. The simulation cell is a cube of
length ≈ 98.2 nm and is subjected to periodic boundary conditions in all directions.
The non-bonded pair interactions between beads are modeled by a Lennard-Jones (LJ)
potential, ULJ, with

ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
,

where σ = 15 Å is the size of the bead, ε = 2.5 kJ/mol is depth of the energy well and
r is the inter-bead distance. All distances in this paper will be discussed in terms of
σ. As a result, the non-dimensional bead size will be σ = 1. The neighboring interac-
tions between beads on the polymer backbone are modeled using the finite extensible
(FENE) bond potential [7], UFENE, allowing for the incorporation of the non-linear
elastic response of the polymer backbone, with

UFENE(r) = −k

(
R2

0

2

)
ln

[
1−

(
r

R0

)2
]
,

where k = 30 ε/σ2 is the bond stiffness, and R0 = 1.5 a is the extensibility limit.
The initial configuration is equilibrated using the two-step procedure [26] to obtain
the equilibrated baseline configuration (i.e. a polymer melt), which is then modified to
incorporate cross-links.

Once the baseline configuration is well equilibrated, the candidate bonding beads are
identified by choosing distinct bead pairs that lie within a cutoff distance of rc < 1.15 σ.
We then randomly choose from the set of candidate bead pairs and assign an irreversible
cross-link between the chosen pairs. To model the irreversible cross-links, we use a
quartic bond potential UQ [27], defined by

UQ(r) =

{
K(r − Rc)

2(r − Rc −B1)(r −Rc − B2) + U0 for r 6 Rc,

0 for r > Rc.

Here K = 1200 ε/a4 is the bond stiffness, B1 = −0.55 a, B2 = 0.95 a, U0 = 34.6878 ε,
and Rc = 1.3 a is the cutoff distance beyond which the quartic bond is considered
broken (and cannot be formed again). This procedure is identical to the preparation of
a single-network (SN) elastomer model in [9].

2.2. Network analysis

We describe the polymer network from the CGMD simulation cell by only consid-
ering the cross-linking beads in the system. Cross-linking beads that are connected to
each other along the backbone of the polymer chain are denoted by a graph edge with
a weight equal to the number of bonds between them. Furthermore, we also define an
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edge between the pair of cross-linking nodes that are involved in forming a cross-link,
with an edge weight of 1. Further details regarding the network representation and SP
calculation can be found in [9]. For each node i, we find a destination node j that is
closest to the point offset from node i by qx in the x-direction and compute the shortest
path length (SP) connecting nodes i and j. The non-local microstructural measure of
the SP has the advantage of being independent of chain conformational fluctuations and
they only depend on the network connectivity, as a result evolving only as a function
of the evolution of the polymer connectivity network. We compute the SPs starting
from all nodes in the polymer network using Dijkstra’s algorithm [28], giving rise to
a distribution. We are interested in how this distribution depends on the choice of
distance qx, where 0 < qx 6 Lx and Lx is the periodic length of the simulation cell in
the x-direction. Note that when qx = Lx, node j is the periodic image of node i and
the simulation box is replicated in the x-direction for the SP calculation, as shown in
Figure 1(a).

Simulation cell Periodic Image

A A’ !"! # $!%

A’ !"! # &'($!%

(a) (b)

Figure 1: (a) The SP between A and the destination node A′ (shown in red) separated by different
distances qx in the CGMD simulation cell (the longer paths are shown in blue).4 (b) The SP distribu-
tions for all nodes at different values of qx, where Lx = 65.5 σ.

As an example, Figure 1(b) plots the SP histogram from the CGMD simulation cell
at offset distances of qx = 0.25Lx, 0.5Lx, 0.75Lx, Lx, respectively. The SP distribution
appears to have a mean that increases linearly with qx, and a standard deviation that
is insensitive to qx. There does not exist any theory or analysis in the literature that
explains this behavior. Furthermore, brute-force computation of the SP distribution is
time-consuming, requiring lengthy equilibration of the CGMD network followed by SP
calculation for all network nodes. These limitations provide the motivation to obtain
theoretical estimates of the SP statistics based on analytically tractable models.

4Note that if the offset distance qx is equal to the simulation cell size Lx, we are guaranteed to find
the destination node at the exact distance since it is the periodic image of the source node. However,
for any other value of qx, we search for the nearest node as the destination node.
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2.3. Branching random walk

In the classical setting, a (discrete-time) branching random walk (BRW) in R
d de-

scribes a stochastic process indexed by n = 0, 1, 2, . . . , where starting from a single
particle at 0 ∈ Rd at time n = 0, each particle performs a standard random walk (e.g.,
with independent increments that are uniformly distributed on the sphere Sd−1 = {x ∈
Rd | ‖x‖ = 1}),5 but randomly reproduces particles at each time step, independently
from each other and from their common ancestor(s). The trajectories of the particles
form a (possibly infinite) tree in Rd. We will be mostly interested in the physical space
of dimension d = 3.

At first sight, there are a few reasons that motivate why the BRW may serve as a
good proxy for the SP statistics of polymer networks:

• It is well known that the equilibrium configuration of single chains in a polymer
melt can be well described by a random walk [11, 29, 30]. In our CGMD model,
the cross-links are added into well-equilibrated polymer melt, and hence we expect
the path obtained by traversing along the backbone of the polymer network to be
also well described by a random walk. While a cross-link in the polymer network
joins two polymer chains together, this can be modeled by extending the random
walk to allow a branching process where one walker becomes three walkers.

• The BRW has a mathematically rich and relatively tractable structure. The
extremal behavior of the BRW is a well-studied subject in probability theory. For
example, in dimension d = 1, a precise asymptotic of the largest displacement of
the BRW particles is well known [12], and the limit behavior near the frontier has
been fully characterized [15, 19].

• The BRW allows enough freedom in the choice of parameters, such as the random
walk step-size distribution and the branching rate. These parameters may be
chosen appropriately so that the statistics of the FPT in the BRW model agree
well with that of the SP in the CGMD model of the polymer network.

The BRW provides an alternative point of view to the polymer network. As shown
in Figure 2(a), the traversal along the backbone of the polymer (starting from node A)
is the equivalent of a random walk path and the point of cross-linking can be thought
of as a branching event, where the path splits into three paths: (i) continuation of the
polymer backbone (A → A′′), and (ii) two parts of another polymer chain (B → B′′).
We would like to point out that what the branching random walk model aims to mimic
is the part of the polymer network that emanates from a single node, rather than the
entire network. Cross-links in polymers typically bind monomers (on chains) that are
physically close to each other, and the occurrence of the cross-linking events in space
can often be described by a Poisson process. In the BRW model, we incorporate the
cross-linking effect by allowing an effective branching rate of κ̃. However, in certain

5Throughout this paper, we use the Euclidean (ℓ2) norm.
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Figure 2: BRW tree representations in the (a) classical and the (b) delayed branching regimes.

polymer systems, cross-links can be controlled to occur only at specific sites, e.g. those
evenly distributed along the polymer backbone [31]. This could be modeled using
deterministic branching events, that occur once every 1/κ̃ steps. In this paper, we
restrict our discussion to the polymer systems where the cross-linking follows a Poisson
process, where κ̃ is obtained from the CGMD simulation cell (see below).

BRW algorithm. The BRW is initialized at the origin as a single path with the branching
probability κ̃ at every time step into three paths. Every subsequent branched child has
the same branching likelihood at every time step. The jumps are of a fixed constant
length σ, corresponding to the bead size in the CGMD simulation cell. Similar to the
SP calculations in the CGMD model, we terminate the BRW (and record FPT) as
soon as any of the random walkers hits within a sphere of radius Rc = σ centered at
(qx, 0, 0). Given that each step corresponds to a unit of time, we can calculate the FPT
(equivalent to the SP) for a BRW. Here, the radius for the termination region specifies
the maximum deviation from the destination at an offset distance of qx from the origin,
similar to the SP analysis in the CGMD model.6

Branching rate estimation. In the case of the polymer network modeled in the CGMD
simulation, the cross-link formation between proximal inter-polymer sites mimics a
Poisson point process. We can track all the inter-cross-link distances along the polymer
backbone, denoted by the variable xb. The survival function (1−CDF(xb)) of the histo-
gram of xb approximates the exponential decay x 7→ exp(−κax). Here, the exponent κa

is the arrival rate for a Poisson process. In our estimation of the branching rate κ̃ = κa,
we will obtain the κa from the cotangent of the logarithm of the survival function of
the xb distribution, given by 1−CDF(xb).

Numerical implementation. Tracking all the branched paths (children) of the BRW tree
is memory intensive. To circumvent this difficulty, in the numerical representation of
the BRW model, we purge the tracks that are farthest away from the termination point.
In our implementation, we fix a large number pc = 9000 and include a path purging

step, where once the number np of tracked paths exceeds pc we trim down the number
of paths to pc/3. Our numerical results (in Appendix B) support the expectation that

6The quality of our models are not sensitive to the choice of radius Rc; any value within the same
order of magnitude would give qualitatively the same result.
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path purging does not noticeably affect FPT calculations. There is also theoretical
support for this expectation, e.g. by Theorem 3.1 of [23] and the discussions therein.

2.4. Extensions of the classical branching random walk model

A closer examination of the classical BRW model reveals the following features of
the CGMD model of the polymer network that have not yet been taken into account.

• The length of the cross-link is neglected. For the classical BRW model, the
cross-links are assumed to have zero length and are not taken into account when
computing the SP statistics. On the other hand, each cross-link in the CGMD
model has a non-zero length and is counted towards the SP.

• The polymer chains (before cross-linking) have a finite length of lc = 500 beads
each in the CGMD model, and hence we would expect a termination rate for the
corresponding BRW model for consistency.

• There is a nontrivial correlation between neighboring link vectors on a polymer
chain in the CGMD network. The classical BRW model fails to incorporate such
correlation effects since its increments are independent.

For these reasons, we introduce the following important extensions of the classical
BRW model that more accurately represent the network in our CGMD configurations.

Delayed branching regime. We introduce a two-step branching regime. Instead of each
random walker immediately branching into three walkers, each branching event now
consists of two sub-events, as shown in Figure 2(b). First, the walker branches into
two walkers; the trajectory of the first descendant corresponds to the original backbone
towards A′′ and the next step of the second descendant corresponds to the cross-link.
Then, after one step, the second descendant branches into two walkers again; their
trajectories correspond to the backbone of the chain B → B′′. The delayed branching
regime is analytically tractable when we consider the FPT, as explained in Section 4.2.

Termination regime. We introduce a termination rate that controls the length of the
paths. Observe that in our CGMD model, when tracing through the cross-link towards
a new polymer chain, the total lengths of the two directions along B → B′′ sum up
to lc = 500. Therefore, to be fully consistent with our CGMD model, one expects
that the lengths of both branches are uniformly distributed among possible choices
(i.e., pairs of non-negative integers that sum up to lc), which is technically difficult for
both theoretical analysis and numerical implementation of our BRW model. Instead,
we propose a (random) termination criterion that leads to similar chain lengths on
average and is both analytically tractable and memory-efficient. Since each branching
event corresponds to cross-linking to a new polymer chain of length lc represented by
two new paths, each path on average takes a length of lc/2. Therefore, the (random)
termination rate can be approximated as ν̃ = 2/lc. At each time step, each existent
path terminates independently with probability ν̃, in the sense that it stops performing
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random walks and no new path will be produced from it. Here, the termination event
and branching event are exclusive, that is, we must have κ̃+ ν̃ 6 1. Since the length of
a polymer chain of lc = 500 is much larger than the possible offset distance qx for the
shortest path analysis considered here, this termination effect will be almost negligible
for large branching rates.

We name the resulting integrated BRW model (with the delayed branching regime
and termination) the (κ̃, ν̃)-BRW, where κ̃ refers to the branching rate and ν̃ is the
termination rate. Our theoretical analysis of the (κ̃, ν̃)-BRW model is applicable to
any termination rate ν̃. We remark that with a positive termination rate, there is
a nontrivial extinction probability for the spatial branching process. For this reason,
in our analysis, we will always condition on the survival event, that there exist alive
particles at all times.

Correlated jumps and mean-squared internal distance. So far, the BRW model we have
discussed incorporates the jumps (i.e., link vectors between nodes) as independent and
identically distributed (i.i.d.) random variables. In practice, one may expect correla-
tions between the jumps due to the volume exclusion of the nodes in a CGMD network.
To this end, we introduce the branching correlated random walk (BCRW) as a general-
ization of the BRW, where the law of a jump vector depends on the jump vector at the
previous step. In the case of a branching event, for simplicity, we assume that the first
step of the children depends on the jump vector of the parent walker at the previous
step.7

To define precisely the BCRW model we need to introduce the concept of mean-

squared internal distance (MSID). To this end, we summarize some of the key results
that are well-known in polymer physics [32]. Let us consider a polymer chain of N
links connecting a series of nodes whose positions are specified by the vectors Ri, i =
0, . . . , N .8 An idealized model using classical BRW to represent the CGMD indicates
that the link vectors ri = Ri−Ri−1 are i.i.d., resulting in E[ri ·ri+1] = 0. Recalling that
each jump length ‖ri‖ = σ, we have in this idealized case that E[‖RN −R0‖2] = Nσ2.
However, we can introduce a measure of correlation, α, between consecutive links such
that the average angle θ between consecutive links is given by α = cos θ. This results
in E[ri · ri+1] = ασ2. In general, it can be shown that E[ri · rj] = α|i−j| σ2. As a result,

in the case of correlated jumps, we have E[‖RN −R0‖2] =
∑N−1

j=−N−1 α
|j| σ2, which in

the limit N → ∞ simplifies to E[‖RN −R0‖2] = C∞N, where C∞ = (1+α)/(1−α) is
called the characteristic ratio. The mean-squared internal distance can now be defined
as

MSID(n) =
E[‖Rn −R0‖2]

n
. (1)

7This is a simplification of the cross-linking event where the orientation of the cross-link and sub-
sequent polymer chain (children) are not expected to be highly correlated with the original polymer
chain (parent). Such an approximation affects very little the results.

8Typically, in this paper, a bold symbol refers to a vector.
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Figure 3: The MSID (in units of σ2) computed from the CGMD model compared against the MSID
of an ensemble of single chains generated using a correlated random walk.

We have limn→∞MSID(n) = C∞. Figure 3 (red line) shows how the MSID of a correl-
ated random walk approaches this limit with increasing n.

We now specify the BCRW model adopted in this work. Given {rk}16k6i−1, the link
vector ri is specified by the following expressions

ji = β ri−1 +
√
1− β2 δi, ri =

ji

‖ji‖
, (2)

where β ∈ (0, 1) and {δi}16i6N are i.i.d. samples from the unit sphere S2. In partic-
ular, the sequence of jump vectors ri is Markovian and as a consequence, there is a
computable constant α = α(β) such that [33]

lim
n→∞

MSID(n) =
σ2(1 + α)

1− α
.

The MSID statistics in the CGMD model (see Figure 3 blue line) can be used to
determine the constant β (by inverting α(β)) in the correlated random walk model.
The MSID obtained from the CGMD network asymptotes to C∞ ≈ 1.83 σ2. We pick
β ≈ 0.4 in (2) so that the MSID obtained from the numerical random walk approached
C∞ in the large n limit (see Figure 3).

Another approach besides introducing correlation between jumps is to modify the
jump distance σ in the BRW model so that its MSID (which is constant in n) matches
that of the CGMD model at a certain value of n. A reasonable choice is n = 1/κ̃,
so that the average distance between consecutive branching points along a path in the
BRW model matches the average distance between neighboring cross-linking nodes on
the same chain in the CGMD model. We use the scaled (κ̃, ν̃)-BRW to represent the
BRW model whose jump distance is scaled to match the MSID at n = 1/κ̃.

Gaussian jumps. The BCRW model with correlated jumps is not analytically conveni-
ent to deal with. However, when the effective branching rate is low, we expect from the
central limit theorem (for sums of i.i.d. increments and for sums of Markov increments)
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that our BRW and BCRW models both can be well approximated by a branching ran-
dom walk model with independent Gaussian increments.9 For this reason, we introduce
the Gaussian branching random walk (GBRW) model, where by definition the jumps are
i.i.d. and Gaussian distributed.10 We incorporate the termination and delayed branch-
ing schemes, as well as proper scaling with MSID, into the GBRW model in order to
stay close to the BCRW model defined above.

Our goal in introducing the GBRW model is to show that little precision is lost even
if we use a simpler (and more universal) model to describe the SP statistics of a polymer
network. Here, the simplicity refers to the fact that the increments are independent, and
there exists a precise formula (up to OP(log log x)) for the FPT just as scaled BRW. The
universality comes from the central limit theorem. We wish to convey the crucial idea
that the correlated random walk defined in (2) should be considered as a prototype, and
other similarly defined correlated random walks (e.g., using the angular fan method)
that exhibit a central limit behavior (with first and second moments matching MSID
calculations) should provide equally good descriptions of SP.

As a further simplification to the GBRW, we will present in Section 4.1 the theor-
etical treatment of the branching Brownian motion (BBM) where we prove a precise
formula (up to OP(1)) for the FPT.

In the majority of our paper, we will focus on the numerical implementation of
the scaled (κ̃, ν̃)-BRW, (κ̃, ν̃)-BCRW, and scaled (κ̃, ν̃)-GBRW models. When there is
no confusion, we simply write BRW, BCRW, and GBRW respectively. The numerical
implementation of the BBM and the unscaled BRW and GBRW models are validated
in Appendix B, though we do not present their performance against the CGMD results
owing to their relatively poorer performance in comparison to the BRW, BCRW, and
GBRW models. A summary of the four models is given in Table 1.

3. Results

The key results of the SP statistics obtained from various types of spatial branch-
ing models are discussed in this section. We start from the BCRW model which is
specifically constructed to carry all three features of the CGMD network: termination,
delayed branching, and correlation, following Section 2.4.11 We then demonstrate the

9Meanwhile, it is well known that normal approximations sometimes behave unsatisfactorily in the
large deviation regime, which applies to our case since we will be interested in the extremal behavior of
the spatial branching models. It is therefore risky to apply the aforementioned heuristic of the central
limit theorem. Fortunately, when the branching rate is sufficiently small (which is the case for the
polymeric systems in which we are interested) and the offset distance qx is not too large, we are in a
relatively moderate deviation regime, and the normal approximation shows quite good precision.

10The increments of a GBRW model are independent, meaning that it fails to capture the correlation
between the jumps on distinct cross-linked chains when compared to the BCRW model. Nevertheless,
this does not hamper the FPT statistics significantly; see Figure 12(a) below.

11We slightly abuse notation here by including the delayed branching property in BRW, where we
also assume that jumps are uniform on S2; instead, the traditional BRW (i.i.d. offsprings) will be
referred to the classical BRW.
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Model BCRW BRW GBRW BBM

Time variable discrete discrete discrete continuous
Jumps dependent independent independent independent

Jump distribution uniform on S2 uniform on S2 Gaussian Gaussian

Jumps ∝
√
MSID N/A X X X

Termination X X X N/A
Delayed branching X X X N/A
FPT predictions not available ±O(log log x) ±O(log log x) ±O(1)

Table 1: A summary of the characteristics of the four spatial branching models considered in this work

scaled BRW and GBRW models,12 which are more tractable and have an equally good
description of the SP statistics. In particular, for the BRW and GBRW models, we will
be able to develop asymptotic formulas for the FPT, which leads to useful theoretical
predictions in Section 4.2.

3.1. SP statistics predicted by BCRW

Numerical results. Using the method described in Section 2.3, the effective branching
rate corresponding to the CGMD model containing 250,000 beads with 6,000 cross-links
is κ̃ ≈ 0.0398 and that with 13,600 cross-links is κ̃ ≈ 0.0856. Figure 4 shows the SP
distribution (for qx ≈ 65.5 σ) from the CGMD model and that predicted by the BCRW
model at these two cross-linking densities. Good agreement is observed between the
CGMD results and BCRW predictions, both in terms of the mean and the standard
deviation.

(a) (b)

Figure 4: The SP distributions from the BCRW compared against a single CGMD configuration at
different cross-link densities: (a) 6000 cross-links (κ̃ ≈ 0.0398), and (b) 13600 cross-links (κ̃ ≈ 0.0856)
for qx = 65.5 σ (≈ 98.2 nm).

Figure 5(a) shows how the SP distribution predicted by the BCRW model depends

12By scaled we mean that the jumps (positions of subsequent particles in the tree) are scaled by a
common factor.
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on the offset distance qx. The distribution shifts to the right with its shape nearly
unchanged with increasing qx, in good agreement with the CGMD result shown in
Figure 1(b). Figure 5(b) shows that the mean SP grows linearly with qx, with excellent
agreement between BCRW and CGMD models. Figure 5(c) shows that the standard
deviation of SP remains almost unchanged in the range of qx considered here, with the
BCRW prediction a little higher than the CGMD results. In summary, the BCRW
model successfully captures the linear dependence of the SP mean with qx and the
CGMD observation that the SP standard deviation stays near a constant value much
smaller than the mean.13 We note that the correlation between successive jumps is
important for reaching the level of agreement between BCRW and CGMD predictions
shown here. If the correlation were simply removed (not shown), then the SP mean
would become larger (the FPT increases since uncorrelated jumps make the trajectory
more tortuous), while the standard deviation would remain largely unchanged and
independent of qx.
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Figure 5: (a) The SP distributions at different values of qx from the numerical BCRW. The (b)
mean and (c) standard deviation of the SP as a function of qx. The data points correspond to
qx = 0.1Lx, 0.15Lx, 0.2Lx, 0.25Lx, 0.5Lx, 0.75Lx, Lx. All network analysis corresponds to a single
CGMD configuration with a cross-link density that corresponds to κ̃ = 0.0856 in the BCRW model.

Metric for linear dependence of SP on qx. Figure 5(b) suggests that in the range of qx
considered here, the SP mean can be well approximated by a linear relation,

µSP(qx) =
qx
c1

+ b (3)

where c1 is the inverse of the slope and b is the intercept. We expect this relation to be
well obeyed as long as qx is not too small. The c1 and b parameters can be extracted
from the µSP(qx) data, as shown in Figure 5(b) by linear regression.14 We note that

13That the FPT of BCRW is concentrated can be supported intuitively by the following famous quote
from [34]: A random variable that depends (in a “smooth” way) on the influence of many independent
variables (but not too much on any of them) is essentially constant.

14For the linear regression fit, we compute the µSP for qx = 0.25Lx, 0.5Lx, 0.75Lx, Lx. We will
later see in (13) that an extra logarithm correction term is expected. However, since the logarithmic
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the intercept b is relatively small (compared against qx/c1) and is on the order of σSP.
Hence the parameter c1 allows us to have a quick estimate of the SP mean, which is
fairly accurate at large qx.

The parameter c1 is a key property; larger c1 means straighter shortest path. Within
the BRW models, c1 can be interpreted as the ‘speed’ of the shortest paths; a larger c1
corresponds to greater distances that the shortest paths can reach per unit time. If we
ignore b, which is small, then c1 is a measure of the straightness of the shortest paths,
and the inverse of c1 is the tortuosity. As we shall discuss in Section 4.3, the inverse of c1
corresponds to an important physical parameter that measures the maximum stretch
that can be applied to the polymer network before significant bond-breaking events
must occur.
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Figure 6: (a) c1 averaged over 10 independent CGMD configurations compared against the BCRW at
different cross-link densities (corresponding to branching rate κ̃ ∈ [0.0148, 0.0934]). (b) Comparison of
the standard deviations of the SP distribution from the CGMD simulation and of the FPT distribution
from the numerical BCRW.

Figure 6(a) plots c1 as a function of the branching rate κ̃ from both the BCRW and
the CGMDmodels. (The cross-link density of typical elastomers corresponds to κ̃ values
lower than the maximum value considered here.) The CGMD results are obtained by
averaging over 10 configurations at each cross-link density. The c1 prediction of the
BCRW model agrees well with the CGMD model, especially at a high branching rate
κ̃. In general, c1 increases with κ̃, indicating that the shortest paths become straighter
at a higher cross-link density. The overall shape of the c1-κ̃ relation resembles that of
a square root function. This is not a coincidence; in Section 4 we will show that if
certain simplifications are introduced, the relationship becomes exactly a square root.
Figure 6(b) plots the standard deviation σSP of the shortest paths as a function of
κ̃ from both the BCRW and the CGMD models for qx = Lx. Here, the prediction
from the BCRW model also shows qualitative agreement with the CGMD model. In
general, σSP decreases with κ̃, indicating that the shortest path distribution becomes

function grows very slowly, this extra term can be well described by the linear and constant terms in
the linear regression estimate for the range of qx we use in our presented analysis.
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more concentrated at a higher cross-link density. The intercept b also decreases with
increasing κ̃, as shown in Appendix C.

3.2. SP statistics predicted by scaled BRW

While the BCRW model in Section 3.1 can successfully capture the SP statistics in
the polymer network, the correlation between jumps is difficult to account for in the
theoretical analysis. To circumvent these difficulties, we introduced simplified models
such as scaled BRW, where individual increments are independent but the jump distance
is scaled to match the MSID at n = 1/κ̃ (scaling the jump as σs =

√
MSID(1/κ̃)σ).

This simplification makes theoretical predictions on SP possible (see Section 4.2).

(a) (b)

Figure 7: The SP distributions compared against a single CGMD configuration from the scaled BRW at
different cross-link densities: (a) 6000 cross-links (κ̃ ≈ 0.0398), and (b) 13600 cross-links (κ̃ ≈ 0.0856)
for qx = 65.5 σ (≈ 98.2 nm).

Numerical results. Figure 7 shows the FPT distribution predicted by the scaled (κ̃, ν̃)-
BRW model, which is in good agreement with the SP distribution from the CGMD
configuration with 6000 cross-links (κ̃ = 0.0398) and 13600 cross-links (κ̃ = 0.0856).
The scaled BRW performs much better than the unscaled BRW (not shown in this
paper) and does comparably as well as the BCRW from Section 3.1. This is because
by scaling jump steps to match the MSID at a n = 1/κ̃, the expansion of the BRW
tree in space is just as fast as the BCRW tree, thereby capturing a similar FPT or SP
behavior.

Figure 8(a) shows that the scaled BRW successfully captures the change in the SP
distribution for different offset distances qx (at branching rate κ̃ = 0.0856). Figure 8(b)
shows that its prediction of mean SP as a function of qx agrees very well with the CGMD
result. Figure 8(c) shows that the predicted width of the SP distribution stays nearly
constant in agreement with CGMD. From the linear dependence of mean SP on qx, we
compute the c1 at different κ̃ from the scaled BRW model, as shown in Figure 9(a).
Figure 9(b) shows the σSP at qx = Lx as a function of different κ̃. These results are in
good agreement with the CGMD results and demonstrate that the independence of the
jumps in the BRW model does not affect the statistics as long as the jumps are scaled
to reproduce the MSID at n = 1/κ̃.
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Figure 8: (a) The SP distributions at different values of qx from the numerical BRW. The (b) mean
and (c) standard deviation of the SP as a function of qx. The data points correspond to qx =
0.1Lx, 0.15Lx, 0.2Lx, 0.25Lx, 0.5Lx, 0.75Lx, Lx. All network analysis corresponds to a single CGMD
configuration with a cross-link density corresponding to κ̃ = 0.0856 in the BRW model.
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Figure 9: (a) c1 averaged over 10 independent CGMD configurations compared against the scaled
BRW at different branching rates κ̃. (b) Comparison of the standard deviations of the SP distribution
from the CGMD simulation and of the FPT distribution from the numerical BRW.

3.3. SP statistics predicted by GBRW

In this section, we present the numerical results of the GBRW model, which makes
the further approximation that the random walk steps satisfy Gaussian distribution, in
addition to being independent. In order to match the MSID of the CGMD model at
n = 1/κ̃, the incremental distribution of the GBRWmodel is given by the 3-dimensional
centered Gaussian distribution with covariance matrix

√
MSID(1/κ̃)/3 I3, where I3 is

the 3× 3 identity matrix.

Numerical results. Figure 10 shows the FPT distribution predicted by the scaled (κ̃, ν̃)-
GBRW model, which is in good agreement with the SP distribution from the CGMD
configuration with 6000 cross-links (κ̃ = 0.0398) and 13600 cross-links (κ̃ = 0.0856).

Figure 11(a) shows that the scaled GBRW successfully captures the change in the SP
distribution for different offset distance qx (at branching rate κ̃ = 0.0856). Figure 11(b)
shows that its prediction of mean SP as a function of qx agrees very well with the CGMD
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(a) (b)

Figure 10: The SP distributions compared against a single CGMD configuration from the numerical
GBRW at different cross-link densities: (a) 6000 cross-links (κ̃ ≈ 0.0398), and (b) 13600 cross-links
(κ̃ ≈ 0.0856) for qx = 65.5 σ (≈ 98.2 nm).
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Figure 11: (a) The SP distributions at different values of qx from the numerical GBRW. The (b)
mean and (c) standard deviation of the SP as a function of qx. The data points correspond to
qx = 0.1Lx, 0.15Lx, 0.2Lx, 0.25Lx, 0.5Lx, 0.75Lx, Lx. All network analysis corresponds to a single
CGMD configuration with a cross-link density corresponding to κ̃ = 0.0856 in the GBRW model.

result. Figure 11(c) shows that the predicted width of the SP distribution stays nearly
constant in agreement with CGMD. From the linear dependence of mean SP on qx, we
compute the c1 at different κ̃ from the scaled GBRW model, as shown in Figure 12(a).
Figure 12(b) shows the σSP at qx = Lx as a function of different κ̃. These results are in
good agreement with the CGMD results and demonstrate that the independence and
Gaussian distribution of the jumps in the GBRW model do not affect the statistics as
long as the jumps are scaled to reproduce the value of MSID at n = 1/κ̃.

4. Analytical predictions and conjectures on first passage times

The numerical analysis of the BRW models in Section 3 demonstrated that they can
capture the essential statistics of shortest paths in a polymer network. Here we will
show that some of these models (BRW and GBRW) are analytically treatable, i.e. we
can obtain analytic expressions on their first passage time (FPT) statistics. These
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Figure 12: (a) c1 averaged over 10 independent CGMD configurations compared against the numerical
GBRW at different branching rates κ̃. The curves labeled Theory refer to the analytic predictions of
the FPT established in Section 4. Here, the BBM Theory curve represents a proxy for the GBRW
using BBM with a modified branching rate based on the termination and delayed branching regimes.
Appendix E. (b) Comparison of the standard deviations of the SP distribution from the CGMD sim-
ulation and of the FPT distribution from the numerical GBRW.

analytic results would provide not only a deeper understanding of the statistical beha-
vior of shortest paths in polymer networks but also a convenient way to estimate the
SP lengths given the cross-link density. Our analysis establishes a connection between
polymer physics and the extensive literature on the extremal behavior of spatial branch-
ing processes. In particular, the inverse of parameter c1 determines the critical stretch
that can be applied to the polymer before extensive bond-breaking events occur. Our
analysis shows that classical polymer models that assume a periodic network topology
(such as the 8-chain model) predict a much longer mean SP for a given offset distance qx,
hence a much larger critical stretch, compared to the more realistic models of polymer
networks where cross-links are introduced randomly.

4.1. First passage times of branching Brownian motion

Starting from the GBRW model considered in Section 3.3, if we introduce a further
modification where the time becomes a continuous variable (instead of being integers),
then we arrive at the branching Brownian motion (BBM) model, which is even more
convenient for theoretical analysis. In the BBM model, the trajectory of each particle
follows the Wiener process in Rd and they can produce new particles at any time with a
fixed branching rate. Here we define the standard BBM where the branching is binary
(each branching event turns one particle into two) and the branching rate is κ̃ = 1
(and zero termination rate, ν̃ = 0). Denote by Mt the maximal displacement of the
one-dimensional standard BBM at time t. A classical result of [16] shows that

Mt =
√
2 t− 3

2
√
2
log t+OP(1). (4)

In the following, we present our theoretical results on FPT asymptotics for BBM and
compare them against (4). We denote by Bx the d-dimensional ball of radius one
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centered at (x, 0, . . . , 0) ∈ Rd, which is our termination criterion for the BBM.

Theorem 1 (FPT for standard BBM). The first passage time τx for the standard BBM

in dimension d > 1 to Bx is given by

τx =
x√
2
+

d+ 2

4
log x+OP(1), (5)

where by definition, the OP(1) term is tight.15

The proof of this theorem is given in Appendix A.1. To achieve greater math-
ematical generality, we may use a standard scaling argument to obtain the following
asymptotes for BBM with a generic branching rate κ (different from the branching rate
κ̃ for the BRW) and a generic diffusivity constant s (different from the step size σ for
the BRW).16

Corollary 2 (FPT for BBM). Consider a BBM in Rd with branching rate κ > 0 and

diffusivity s > 0, then its first passage time τκ,s(x) to Bx is given by

τκ,s(x) =
x

s
√
2 κ

+
d+ 2

4 κ
log

(x
s

)
+OP(1), (6)

where by definition, the OP(1) is tight in x for each fixed κ and s.

Corollary 2 has a number of consequences that lead to a better understanding of
the BRW models. As a simple example, we showcase how the delayed branching BRW
with uniform jumps on S2 can be approximated using a BBM. The quantity x in (6)
corresponds to the qx in the SP and FPT analysis in the previous sections, and the first
two terms on the right-hand side of (6) correspond to µSP(qx). Since BBM is isotropic
in 3 dimensions, the central limit theorem yields that each step of the BRW can be
approximated by a Gaussian vector N(0, σ2I3/3). In other words, we apply Corollary 2
with diffusivity s = σ/

√
3. Next, we will derive in Appendix E that the BBM branching

rate κ well approximates a BRW branching rate κ̃ if κ solves eκ(κ + ν̃) = 2 κ̃. Note
that in the limit of ν̃, κ̃ → 0, we have the approximation κ ≈ 2 κ̃ (this is because, in
our BRW models, every branching event produces two new particles instead of one new
particle in the standard BBM model).

The asymptotic (6) will be numerically validated in Appendix B.2 for diffusivity
s = 1, which corresponds to a random walk with jump length of

√
3. We leave it as a

mathematical challenge for future studies to analyze the structure of the OP(1) term:
whether it converges in law, and even whether it is of the form c+oP(1) for some constant
c (as is the case for the one-dimensional maximum Mt). We note that (6) provides a

15A family of random variables {Zx}x>0 is tight if for every ε > 0 there are constants b, x0 > 0 such
that sup

x>x0
P(|Zx| > b) < ε.

16By definition, a Brownian motion of diffusivity s is equivalent in distribution to a standard
Brownian motion scaled by s. In other words, the variance at time t is s2t.
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theoretical justification for our numerical finding that the standard deviation of SP in
the polymer network is much less than its mean at large qx.

The right-hand side of (6) for the FPT τκ,s(x) does not appear to be linear in x,
in contrast to (3). In the limit as x → ∞, the quantity c1 approximately equals s

√
2 κ

where s =
√
MSID(1/κ̃)/3, whereas in the linear fitting executed in our numerical

analysis, the effect from the logarithm term is not negligible at x = qx. Nonetheless,
we can still use (6) to provide an estimate of the c1 parameter obtained from the linear
fit,

c1 ≈
(

1

s
√
2 κ

+
d+ 2

4κ q̂x

)−1

. (7)

where q̂x lies somewhere inside the range of qx where the linear fit is performed.

4.2. Conjectural asymptotics for branching random walk models

In Section 4.1, we established the asymptotes for the maximum (4) and the FPT
(5) for the BBM. In particular, the asymptote (5) with d = 1 is precisely the inversion
of (4), in the sense that Mτx ≈ x and τMt

≈ t. This crucial inversion relation motivates
several conjectures for the FPT of the BRW models of interest. Before stating these
conjectures, we need to understand the asymptotics of the maximum of the BRWmodels
we introduced.

The key difference between BRW and BBM models is that in BRW the time is
discrete, which makes the analysis more difficult. We will use integer n to represent
the time in BRW models. In the following, we will state a theorem on the maximal
displacement for the BRW models, which should be compared against (4). We will
work in a general dimension d > 1 and only impose mild assumptions on the jump
distribution, while the termination and delayed branching schemes remain. First, we
introduce a large deviation rate function to characterize the jump vector ξ at each step
of the BRW models. We assume that the distribution of ξ is rotationally invariant.
Denote by ξ the first coordinate of ξ, which is a real-valued random variable. The large
deviation rate function is defined as

I(x) := sup
λ>0

(
λx− log φξ(λ)

)
, (8)

where φξ(λ) := E[eλξ] is the moment generating function for ξ (we assume implicitly
that this is well-defined for λ ∈ R). For example, for the (unscaled) GBRW model we
have I(x) = x2/2.

Theorem 3 (maxima for one-dimensional delayed branching BRW). In the above set-

ting, suppose that (κ̃, ν̃) satisfies κ̃ + ν̃ 6 1 and 2κ̃(1 − ν̃) > ν̃. Let Mn denote the

maximum of the first coordinate of the (κ̃, ν̃)-BRW. Conditioned upon survival,

Mn = c1n− 3

2 c2
log n+OP(1) , (9)
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where

ρ := ρ(κ̃, ν̃) =
1− ν̃

2
+

√
(1− ν̃)2

4
+ 2κ̃(1− ν̃) (10)

and c1 and c2 are constants satisfying the following equations:

I(c1) = log ρ , (11)

c2 = I ′(c1) .

For example, for the (unscaled) GBRW model we have c1 = c2 =
√
2 log ρ. The form of

(10) is slightly more involved due to the delayed branching property. Indeed, for BRW
without delayed branching, (10) is replaced by ρ = 1 + 2κ̃− ν̃, a well-known result in
the literature [12]. A derivation of the formula (10) can be found in the proof of Lemma
5 in Appendix A.2.

Intuitively, ρ is the parameter that indicates the rate of growth of the number of
particles: at time n, we expect that the number of particles grows like ρn conditioned
upon survival. The existence and uniqueness of c1 in (11) is a consequence of the
assumption 2κ̃(1 − ν̃) > ν̃. Indeed, this implies ρ > 1, and we recall that I is strictly
increasing, concave, and continuous on [0,∞), and I(0) = 0.

For a large n, the linear coefficient c1 in (9) describes the effective velocity of the
maximum of the BRW. Let us briefly explain why intuitively we expect that the effective
velocity c1 satisfies I(c1) = log ρ. Suppose that the locations of the particles at time n
are independent.17 By Cramér’s theorem (see [35]), the probability of finding a certain
particle located around c1n at time n is roughly e−(I(c1)+o(1))n. Since we expect around
ρn particles at time n, the total number of particles near c1n at time n can be estimated
by ≈ ρne−I(c1)n = 1, meaning that the maximum reach of the particles is close to c1n
at time n.

It is instructive to compare (9) with (4). For example, (9) reduces to (4) if c1 =
c2 =

√
2. Intuitively, we may consider BBM as a generalization of the GBRW model

(i.e. with Gaussian increments) with I(x) = x2/2 to continuous time. For a standard
BBM model, we expect the number of particles to grow as et, and hence ρ = e. This
amounts to c1 = c2 =

√
2 log ρ =

√
2.

In view of the inversion relation in the BBM model between the FPT in (5) and the
maximal displacement in (4), we pose the following conjecture for the BRW model.

Conjecture 1 (FPT for delayed branching BRW). In the above setting, suppose that
(κ̃, ν̃) satisfies κ̃ + ν̃ 6 1 and ρ(κ̃, ν̃) > 1. Conditioned upon survival, the first passage
time τx to Bx satisfies the asymptotic

τx =
x

c1
+

d+ 2

2c2c1
log x+OP(1). (12)

17Of course, this is a wrong hypothesis, since two paths have the same displacements before they
branch. This partly explains the logarithm correction term.
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In a companion paper [36], we prove a slightly weaker version of (12), with the OP(1)
term replaced by OP(log log x) under certain mild assumptions on ξ (that applies for
uniform distribution on S2 and Gaussian distribution on R3). That is, we prove that
conditioned upon survival,

τx =
x

c1
+

d+ 2

2c2c1
log x+OP(log log x). (13)

The asymptotic relation (13) is confirmed numerically in Appendix B.1.
The formula (13) provides the analytic prediction of the quantity c1 that can be

compared against the CGMD results, as shown in Figure 12(a). As remarked above,
c1 becomes c1 only in the limit of x = qx → ∞. At a finite offset distance qx, the
logarithm term in (13) is not negligible,

c1 ≈
(

1

c1
+

d+ 2

2c1c2 q̂x

)−1

, (14)

where q̂x lies somewhere inside the range of qx where the linear fit is performed. Fig-
ure 12(a) shows the analytic prediction of c1 (for q̂x = Lx/2) as a function of κ̃ for the
BBM model (see (7)) and the GBRW model (see (14)), which is in good agreement
with both the numerical implementation of GBRW model and the CGMD results.

4.3. Critical stretch and comparison with classical periodic network model for polymers

The theoretical analysis for the BBM, GBRW, and BRW models above provides
an accurate estimate of the FPT distribution that explains the SP distribution in a
polymer network given the cross-link density from the CGMD simulations. The mean
SP, in particular the parameter c1, determines the stretchability of the elastomer before
the onset of significant bond-breaking events. To see why this is the case, consider
a shortest path of contour length LSP connecting two nodes at distance qx apart. If
a stretch λ is applied to the network but no bonds break, then the two nodes are
separated by λ qx and the shortest path contour length stays at LSP. Because the end-
to-end distance of a shortest path can never be stretched longer than its contour length,
we have λ qx 6 LSP, i.e. λ 6 LSP/qx ≈ 1/c1. Therefore, we can define λc = 1/c1 as
the critical stretch that can be applied to the elastomer before extensive bond-breaking
occurs.

We now discuss how the critical stretch λc depends on the cross-link density, char-
acterized by parameter κ̃. For simplicity, here we shall ignore the effect of correlation
between consecutive jumps in the random walk, i.e., modeling the polymer chain as an
uncorrelated random walk (σ = 1). We pick the BBM model (at d = 3) with unit jump
length (corresponding to s =

√
1/3), where the analytic expression is the simplest. In

the limit of ν̃, κ̃ → 0, κ ≈ 2κ̃. In the limit of large qx, we have c1 → s
√
2κ ≈

√
4 κ̃/3

and hence

λBBM
c ≈

√
3

4 κ̃
. (15)
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On the other hand, if one assumes the periodic network structure of the 8-chain
(a.k.a. Arruda-Boyce) model [6], it can be easily shown that c1 =

√
κ̃/3 and hence18

λ8-chain
c ≈

√
3

κ̃
. (16)

Note that both models predict the same κ̃−1/2 scaling with the cross-link density.
However, λ8-chain

c /λBBM
c ≈ 2. This means that relative to the more realistic model that

accounts for the random distribution of cross-links, the 8-chain model overestimates
the critical stretch for extensive bond-breaking by about a factor of 2 (in the limit of
qx → ∞, ν̃, κ̃ → 0, see Appendix D for comparison against other spatial branching
models).

0 10 20 30 40 50 60

(a)

0 100 200 300 400 500 600

(b)

Figure 13: Shortest path trajectory for the BRW model (red path with selected branches shown in
black) and 8-chain model (blue path) at κ̃ = 0.1 for the same amount of time it takes for the BCRW
path to reach its destination for (a) qx = 62 and (b) qx = 620.

To provide an intuitive understanding of the difference between BRW (approximated
by the BBM estimates in (6)) and the periodic model of the polymer network, we look
at the trajectory of the shortest path from the BRW model and the 8-chain model

18Strictly speaking, within the 8-chain model, the contour length of the shortest path can never be
exactly straight because it must pass through the body-center of the unit cell. Accounting for this
constraint leads to an implicit equation for the critical stretch, λ2

c
+ 2/λc = 3/κ̃, the solution of which

is close to (16) in the limit of large λc.
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for κ̃ = 0.1 and ν̃ = 2/500 for which κ ≈ 1.65 κ̃. Here we expect from (6) that
λ8-chain
c /λBBM

c ≈ 1.82 (in the limit of qx → ∞). Figure 13(a) shows the trajectory of
the shortest path generated by the BRW model (shown in red). A few side branches
connected to the shortest path are shown in black. In this case, the mean shortest
path is able to reach a distance of qx = 62 in 220 steps. The blue path in Figure 13(a)
shows the shortest path in a network consisting of periodic repeating cells (dashed
line) each containing eight chains (only two chains are shown for clarity). In this
case, the shortest path only reaches a distance of q8-chainx ≈ 40 in 220 steps. In other
words, the shortest path in the 8-chain model of the polymer network is much more
tortuous than that predicted by the more realistic BRW models. As a result, the 8-
chain model would overestimate the critical stretch by which extensive bond-breaking
events occur. Here, the ratio of the distance covered in the same duration as the FPT
of the BRW (qx/q

8-chain
x ) is ≈ 62/40 ≈ 1.54. On increasing the qx to 620, this ratio

increases to ≈ 1.77, as shown by the paths in Figure 13(b). This is smaller than
the theoretical estimate of λ8-chain

c /λBBM
c ≈ 1.82 because in this illustration qx is still

relatively small. We have numerically verified that for a very large offset distance qx
the limit λ8-chain

c /λBBM
c ≈ 1.82 is indeed recovered.

The 8-chain model has been very successful in predicting the elastic (i.e. reversible)
responses of elastomers, which is the result of the aggregated response of all polymer
chains in the network. However, at the critical stretch, λc, we are entering the regime of
irreversible strain-induced damage. In this regime, the polymer chains that lie on the
shortest paths play a decisive role because they constrain the maximum stretch that can
be applied unless bond breaking occurs. The spatially branching processes provide a
more realistic description of the length distribution of shortest paths and hence a more
physical description of the polymer as it enters the irreversible strain-induced damage
regime.

5. Conclusions and outlook

In this paper, we present a class of branching random walk (BRW) models whose first
passage time (FPT) statistics are used to generate shortest path length (SP) statistics
to understand the structure of polymeric networks as modeled by CGMD simulations.
The effective branching rate (for a given cross-link density) in our BRW models is
obtained from the inter-cross-link chain length distribution from the CGMD simulation
cell. We analyze the FPT of the BRW and relevant models from both numerical and
theoretical aspects. The numerical simulations show that multiple BRW models, with
various levels of idealizations, are able to reproduce the SP distribution (in terms of
both mean and standard deviation) of the polymer model as modeled by CGMD. Our
theory yields an explicit relation between the mean SP (FPT) and the offset distance
qx as a function of the cross-link density. The theoretical estimate validates the results
from our numerical approach and is in good agreement with the CGMD calculations.
The FPT or SP dependency on the offset distance at equilibrium serves as an indicator
of the stretch limit or stretchability of the polymer. The theoretical estimate of the FPT
from the spatial branching processes shows a much lower stretch limit as compared to
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idealized representations of polymer networks using periodic repeating structures. This
shows that treating the polymer network as a BRW captures a more realistic response
of the material response in the regime of extensive bond-breaking.

In this paper, we have analyzed polymer networks prepared at equilibrium, before
any deformation and strain-induced damage, and the SP distribution is expected to be
isotropic. As a result, the BRW has been modeled with isotropic jumps in space. The
next step is to see whether the BRW models can be used to understand the evolution
of SP statistics as bonds break by deformation. In elastomers with irreversible cross-
links, we hypothesize that the reduction in the number of bonds (cross-link density)
with loading may be modeled by a modification in the branching rate of the BRW or
by introducing anisotropy in the jumps as governed by the directional dependence of
the SP. Reversibly cross-linked systems present a challenge since there is no reduction
in the cross-link density (broken cross-links readily reform at ultrafast timescales). It
appears that the BRW would have to model anisotropy in each jump to account for the
evolution in the SP distribution. Modeling the SP evolution with strain in polymers
with different types of cross-links would be the next challenge in representing polymer
network evolution using spatial branching processes.
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[19] Elie Äıdékon, Julien Berestycki, Éric Brunet, and Zhan Shi. Branching Brownian
motion seen from its tip. Probability Theory and Related Fields, 157:405–451, 2013.

[20] Louis-Pierre Arguin, Anton Bovier, and Nicola Kistler. The extremal process of
branching Brownian motion. Probability Theory and related fields, 157(3-4):535–
574, 2013.

[21] Bastien Mallein. Maximal displacement in the d-dimensional branching Brownian
motion. Electronic Communications in Probability, 20:1–12, 2015.

[22] Julien Berestycki, Yujin H Kim, Eyal Lubetzky, Bastien Mallein, and Ofer Zeitouni.
The extremal point process of branching Brownian motion in Rd. arXiv preprint

arXiv:2112.08407, 2021.

[23] Yujin H Kim, Eyal Lubetzky, and Ofer Zeitouni. The maximum of branching
Brownian motion in Rd. The Annals of Applied Probability, 33(2):1515–1568, 2023.

[24] Viktor Bezborodov and Nina Gantert. The maximal displacement of radially sym-
metric branching random walk in Rd. arXiv preprint arXiv:2309.14738, 2023.

[25] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton. LAMMPS - a flexible
simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales. Comp. Phys. Comm., 271:108171, 2022.

[26] Yelena R Sliozberg and Jan W Andzelm. Fast protocol for equilibration of en-
tangled and branched polymer chains. Chemical Physics Letters, 523:139–143,
2012.

[27] Ting Ge, Flint Pierce, Dvora Perahia, Gary S Grest, and Mark O Robbins. Mo-
lecular dynamics simulations of polymer welding: Strength from interfacial entan-
glements. Physical Review Letters, 110(9):098301, 2013.

[28] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

27



[29] Masao Doi, Samuel Frederick Edwards, and Samuel Frederick Edwards. The The-

ory of Polymer Dynamics, volume 73. Oxford University Press, 1988.

[30] William W Graessley. Polymeric Liquids & Networks: Structure and Properties.
Garland Science, 2003.

[31] Christopher B Cooper, Jiheong Kang, Yikai Yin, Zhiao Yu, Hung-Chin Wu, Shayla
Nikzad, Yuto Ochiai, Hongping Yan, Wei Cai, and Zhenan Bao. Multivalent as-
sembly of flexible polymer chains into supramolecular nanofibers. Journal of the

American Chemical Society, 142(39):16814–16824, 2020.

[32] Michael Rubinstein and Ralph H Colby. Polymer Physics, volume 23. Oxford
University Press New York, 2003.

[33] Rolf Auhl, Ralf Everaers, Gary S Grest, Kurt Kremer, and Steven J Plimpton.
Equilibration of long chain polymer melts in computer simulations. The Journal

of Chemical Physics, 119(24):12718–12728, 2003.

[34] Michel Talagrand. A new look at independence. Annals of Probability, 24(1):1–34,
1996.

[35] Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications.
Springer, 1998.

[36] Jose Blanchet, Wei Cai, Shaswat Mohanty, and Zhenyuan Zhang. On the first
passage times of branching random walks in Rd. In preparation, 2023+.

[37] Ronald Aylmer Fisher. The wave of advance of advantageous genes. Annals of

Eugenics, 7(4):355–369, 1937.

[38] Andrei Kolmogorov, Petrovskii Ivan, and Piskunov Nikolai. Étude de l’équation
de la diffusion avec croissance de la quantité de matière et son application à un
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Appendix A. Proofs of results in Section 4

Appendix A.1. Proof of Theorem 1 and related discussions

In this appendix, we prove Theorem 1. Let us first summarize a few preliminary
results from the literature. In the following, we work in a general dimension d > 1 and
assume the BBM is standard. Denote by Mt the maximal displacement of the BBM at
time t. The first precise asymptotic in dimension d = 1 for Mt was given by [16], whose
proof was later considerably simplified by [18]. More precisely, we have

Mt =
√
2 t− 3

2
√
2
log t+OP(1). (A.1)

Finer behavior near the frontier was analyzed by [19] and [20]. In dimension d > 1,
we mention the very recent works of [23] and [22] on characterizing the behavior of the
maximal norm of the BBM in Rd, where the precise asymptotic was first given by [21].

The BBM is intimately connected to the Fisher-KPP equation introduced by [37,
38]—it is shown by [39] that v(t, x) = P(Mt > x) solves the Fisher-KPP initial value
problem vt = vxx/2 + v − v2, with initial condition v(0, x) = 1{x60}. Analogously, as
pointed out by [21], in dimension d > 1, v(t, x) = P(∃u ∈ Nt : ‖Xt(u)− x‖ 6 1) solves
the multi-dimensional Fisher-KPP equation

{
vt =

1
2
∆v + v − v2, t > 0, x ∈ Rd,

v(0,x) = 1{x∈B0(1)}.
(A.2)

Here and later, we let Nt be the collection of particles at time t andXt(u) the location of
a particle u ∈ Nt at time t. The multi-dimensional Fisher-KPP equation has been stud-
ied by [40] in a probabilistic framework and later by [41] and [42] using a PDE approach,
where it is shown that the level set v = 1/2 appears at x =

√
2t−((d+2) log t)/(2

√
2)+

OP(1).
19 Consequently, [21] stated that “the probability to find an individual within

distance 1 of a given point x is small if ‖x‖ ≫
√
2t− ((d+ 2) log t)/(2

√
2) and large if

‖x‖ ≪
√
2t − ((d + 2) log t)/(2

√
2).” Formally, with A(x) = x/

√
2 + ((d + 2) log x)/4,

the following result holds.

Theorem 4. Fix ε > 0. There exists C = C(ε) > 0 such that for every x ∈ R
d with

‖x‖ large enough and every t < A(‖x‖)− C,

P(∃u ∈ Nt : ‖Xt(u)− x‖ 6 1) < ε,

and for every t > A(‖x‖) + C,

P(∃u ∈ Nt : ‖Xt(u)− x‖ 6 1) > 1− ε.

19Inverting this relation gives t = x/
√
2 + ((d+ 2) log x)/4 +OP(1), giving precisely (5).
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Remark 1. In a similar manner, finding the FPT for a domain in Rd is equivalent to
solving the multi-dimensional Fisher-KPP equation with a Dirichlet boundary condi-
tion; see e.g., the derivation in [39] and the Appendix of [16]. More precisely, consider
the boundary value problem





vt =
1
2
∆v + v − v2, t > 0, x ∈ Rd,

v(0,x) = 1{x∈B0(1)},

v(t,x) = 1, t > 0, x ∈ Sd−1.

(A.3)

It holds that v(t,x) = P(τ
x
< t), the probability that the BBM starting from 0 ∈ Rd

has already reached B
x
(1) by time t. Nevertheless, we are not aware of studies of

(A.3), given that it is a boundary value problem instead of an initial value problem.
Our Theorem 1 shows that asymptotically, the solutions to the two problems (A.2) and
(A.3) are reasonably close.

Proof of Theorem 1. The upper bound of τx follows directly from Theorem 4. For the
lower bound, we fix ε > 0 and an increasing sequence a(x) → ∞, and it suffices to show
for x large enough,

P

(
τx 6

x√
2
+

d+ 2

4
log x− a(x)

)
< ε. (A.4)

Observe that with x = (x, 0 . . . , 0) ∈ Rd and t0 = x/
√
2 + ((d+ 2) log x)/4− a(x)/2,

P

(
τx 6

x√
2
+

d+ 2

4
log x− a(x)

)

6 P(∃u ∈ Nt0 : ‖Xt0(u)− x‖ 6 3) + P(∀u ∈ Nt0−τx : ‖Xt0−τx(u)‖ > 2; τx 6 t0 −
a(x)

2
).

Since a ball of radius 3 can be covered by finitely many balls of radius 1 in Rd, the
first probability is bounded by ε/2 for x large. Splitting the second probability on the
events τx ∈ (j − 1, j] we obtain

P

(
∀u ∈ Nt0−τx : ‖Xt0−τx(u)‖ > 2; τx 6 t0 −

a(x)

2

)

6

∞∑

j=1

P

(
∃t ∈

(a(x)
2

+ j − 1,
a(x)

2
+ j

)
, ∀u ∈ Nt, ‖Xt(u)‖ > 2

)
.

Divide equally the interval (a(x)/2+ j−1, a(x)/2+ j) into qx(j) := exp((a(x)/2+ j)/3)
many intervals {Iℓ} with endpoints a(x)/2 + j − 1 = t0 < · · · < tqx(j) = a(x)/2 + j.
Denote by Z a d-dimensional standard Gaussian random variable and write u 7→ v if v

31



is a descendant of u. We have

P

(
∃t ∈

(a(x)
2

+ j − 1,
a(x)

2
+ j

)
, ∀u ∈ Nt, ‖Xt(u)‖ > 2

)

6

qx(j)∑

ℓ=1

P(∀u ∈ Ntℓ , ‖Xtℓ(u)‖ > 1) + P


sup

ℓ
sup
s,t∈Iℓ
s>t

sup
u∈Nt,v∈Ns

u 7→v

‖Xt(u)−Xs(v)‖ > 1




6

qx(j)∑

ℓ=1

P(∀u ∈ Ntℓ , ‖Xtℓ(u)‖ > 1) + qx(j)e
2(a(x)/2+j)

P

(
‖Z‖ >

√
qx(j)

)
+ o(1)

=

qx(j)∑

ℓ=1

P(∀u ∈ Ntℓ , ‖Xtℓ(u)‖ > 1) + o(1),

where in the second inequality we used Markov’s inequality on the number of particles
present at time a(x)/2 + j. By Theorem 2.1 of [43] applied with a = k = θ = 0 and
r0 = 1, for x large,

P(∀u ∈ Ntℓ , ‖Xtℓ(u)‖ > 1) 6 e−(a(x)/2+j−1)/2.

Altogether, we obtain the bound (A.4).

Appendix A.2. Proof of the remaining results from Section 4

Proof of Corollary 2. Fix a dimension d > 1, and let us denote by τ rκ,s(x) the FPT
of a BBM with branching rate κ and diffusivity s to a ball of radius r centered at
(x, 0, . . . , 0) ∈ Rd. In particular, τ 1κ,s(x) = τκ,s(x). By self-similarity of the Brownian
motion, we have the relations

τ 1κ,s(x)
law
= τ s

−1

κ,1

(x
s

)
and τ 1κ,s(x)

law
=

1

κ
τ
√
κ

1,s

(√
κx

)

for every κ, s > 0. The proof then follows immediately from Theorem 1, where we
note that the same proof works if we replace the target Bx by a ball centered at
(x, 0, . . . , 0) ∈ Rd of a fixed radius r > 0.

Proof of Theorem 3. Note that the only difference between the classical BRW and our
delayed branching BRW models is the branching structure, i.e., the underlying tree
that describes the genealogy of the particles. The proof of the version of Theorem 3 for
classical BRW depends on the branching structure only through the first moment and
second moment estimates; see (28) and (29) of [14]. In our case, this can be adapted
using Lemma 5 below.

Lemma 5. Conditioned upon survival, the expected number of particles Nn at time n
for the delayed branching BRW model satisfies Nn ≍ ρn,20 where ρ is given by (10).

20For two sequences {An} and {Bn}, we write An ≍ Bn if there is a constant C > 0 independent of
n such that An/C 6 Bn 6 CAn for all n.
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Proof. Let us first prove that Ñn ≍ ρn where Ñn is the expected value of Zn, the number
of particles at time n (without conditioning upon survival). Recall from Section 2.4
that in the delayed branching regime, each branching event consists of two branching
sub-events at consecutive times, both into two branches. We call the first of the two
sub-events the branching of type I, and the second branching of type II. For n ∈ N,
let αn be the expected number of branching sub-events of type I at time n − 1. By
construction, this is the same expected number of branching sub-events of type II at
time n. Our definition of the delayed branching regime then leads to the following
recursive equations of (Ñn, αn):

• Ñ1 = 1, α1 = 0;

• each particle at time n that does not initiate a branching of type II independently
has probability κ̃ to create a branching of type I, thus αn+1 = κ̃(Ñn − αn);

• the increment of particles at time n+1 comes from contributions from branchings
of types both I and II, meaning that Ñn+1 = 2(1− ν̃)αn + (1 + κ̃− ν̃)(Ñn − αn).

In matrix form, we write

[
Ñn+1

αn+1

]
=

[
1 + κ̃− ν̃ 1− κ̃− ν̃

κ̃ −κ̃

] [
Ñn

αn

]

=

[
1 + κ̃− ν̃ 1− κ̃− ν̃

κ̃ −κ̃

]n [
1
0

]
=: M(κ̃, ν̃)n

[
1
0

]
.

The largest eigenvalue of the matrix M(κ̃, ν̃) is precisely ρ(κ̃, ν̃) defined in (10), and we

conclude that Ñn ≍ ρn.
Denote by p = 1−q = P(S). We first prove that q < 1 if ρ > 1. Let qn = P(Zn = 0),

so that qn ↑ q. By construction of the delayed branching regime, we have q1 = ν̃,
q2 = ν̃ + (1− κ̃− ν̃)q1 + κ̃ν̃2q1, and for n > 1,

qn+2 = ν̃ + (1− κ̃− ν̃)qn+1 + κ̃(1− ν̃)2qn+1q
2
n + κ̃ν̃2qn+1 + 2κ̃ν̃(1− ν̃)qn+1qn. (A.5)

Consider the equation

q = h(q) := ν̃ + (1− κ̃− ν̃)q + κ̃(1− ν̃)2q3 + κ̃ν̃2q + 2κ̃ν̃(1− ν̃)q2.

It is elementary to check that h(0) = ν̃ > 0, h(1) = 1, and that if ρ > 1, then h′(1) < 1.
In particular, there exists a solution q̂ ∈ (ν̃, 1) to the equation q = h(q). It follows from
(A.5) that if qn 6 qn+1 6 q̂, then qn+2 6 q̂. By induction, we know that qn 6 q̂ for each
n. Therefore, q = lim qn 6 q̂ < 1.

Observe that Ñn = pNn + qE[Zn | Sc]. Since we have the bound

P(Zn > y | Sc) =
P(Zn > y, Sc)

q
6

P(Sc | Zn > y)

q
6 qy−1,

it holds E[Zn | Sc] 6 C(q). Hence, we conclude that Nn ≍ ρn.
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Appendix B. Numerical validation of the first passage time asymptotics

In this appendix, we provide numerical verification of the FPT asymptotics for BRW
(13) and BBM (6). In particular, we show that the path purging in our numerical
algorithm affects very little the FPT.

Appendix B.1. Validation of the asymptotic (13)

Recall that the coefficient 1/c1 of the linear term for the estimation (13) of τx can
be computed through the relation I(c1) = log ρ. Recall also that ν̃ = 2/lc is the
termination rate and

ρ = ρ(κ̃, ν̃) =
1− ν̃

2
+

√
(1− ν̃)2

4
+ 2κ̃(1− ν̃).

The implicit relation between c1 and κ̃ can thus be computed for the BRW and compared
against the numerical BRW implementation.

Next, we compute numerically the relation between c1 and κ̃. For any given κ̃, we
calculate the SP distribution for 1000 paths at different offset distances for qx ∈ [20, 60].
The mean SP (same as the FPT for a unit length jump per unit time), τ(qx), is then
fit to a function of the form,

τ(qx) =
qx
c1

+B log(qx) + C. (B.1)

The parameter κ̃ is obtained by uniformly sampling 19 points from [0.05, 0.95].
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Figure B.14: The numerical BRW obtained c1 compared against the reference calculation (13) at
different branching rate κ̃ for the BRW model with increments (a) uniformly distributed on S2 (BRW);
(b) Gaussian distributed on R

3 (GBRW).

We see that the numerically obtained coefficient c1 of the linear term is in decent
agreement with the reference theory estimates for the BRW, as shown in Figure B.14.
This indicates that the numerical approximation of path purging does not affect the
linear coefficient of the scaling behavior of the SP or FPT distribution of the numerical
BRW, and can be used as a suitable approximation for carrying out the numerical BRW
to represent a CGMD network.
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Appendix B.2. Validation of the asymptotic (6)

We use a similar approach to verify the theoretical prediction (6) for the FPT of the
standard BBM. Note that here we do not include the termination or delayed branching
regimes. With the choice of σ = 1, the coefficient 1/c1 for (6) is equal to 1/

√
2κ̃ for

κ̃ > 0.
For κ̃ sampled uniformly in [0.05, 0.95], we compute numerically the mean first pas-

sage times τ(qx) at different offset distances qx ∈ [20, 60] and fit them to a function
of the form (B.1). The linear coefficient demonstrates a decent agreement with the
theoretical prediction, as shown in Figure B.15. Again, this supports that path purging
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Figure B.15: The c1 obtained numerically from the BBM compared against the theoretical estimate
at different branching rates κ̃ for the BRW model.

has a negligible effect on the distribution of the FPT. The divergence of the beha-
vior of the numerical implementation from the theoretical estimate occurs due to the
pseudo-continuous implementation of time (discrete time steps of 0.1). The effect of
discretization is negligible at lower branching rates (even with a time step of 0.25 for
κ̃ 6 0.1), but becomes more apparent for κ̃ > 0.3 which is well above the cross-link
density in realistic polymeric systems that are simulated using the CGMD method.

Appendix C. Intercept of the linear dependency

We have used linear dependency, c1, to classify the quality of agreement of the
numerical model to the CGMD calculations, as shown in Figures 6(a), 9(a) and 12(a).
However, the same linear dependency c1 may represent a family of straight lines with a
slope of 1/c1 but distinct intercepts. As a result, to fully characterize the SP mean we
look at the intercept, SP(qx = 0). We see that the three presented numerical models
are in agreement with the CGMD results, barring at lower cross-link densities as shown
in Figure C.16.

Appendix D. Shortest path in the 8-chain model

In this appendix, we present the comparison of the theoretical estimates of c1 ob-
tained from the spatial branching processes (scaled BRW, GBRW, and BBM). The in-
tuition is that the idealized and simplified 8-chain (a.k.a. Arruda-Boyce) model places
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Figure C.16: The intercepts of the SP(qx) for the (a) BCRW, (b) scaled BRW, and (c) scaled GBRW
methods.

all chains along the shortest path. This makes the shortest path between distance nodes
much longer than the spatial branching models, for the realistic range of branching rates
encountered in the CGMD simulations (κ̃ < 0.1). The resultant c1 is expected to be
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Figure D.17: The c1 computed analytically from the theoretical estimate at different branching rates
κ̃ for the 8-chain, scaled BRW, GBRW, and BBM models. The scaling of the jumps as a function of
the MSID has been accounted for resulting in an additional 1/σ factor multiplying the estimates in
(7) and (14).

much lower in the 8-chain model as a consequence and this is confirmed by the theor-
etical estimate of c1 from the 8-chain model and the other spatial branching processes,
as shown in Figure D.17.

Appendix E. Approximating GBRW with BBM

In this appendix, we discuss how to approximate our GBRW model (see Section 3.3
for details) by a standard BBM with an implied branching rate. Recall from Section 2.4
that we introduced the extra features of termination and delayed branching property.
The analogies for the BBM can be summarized as follows:

• termination: each existent particle carries an independent exponential clock with
rate ν̃ = 1/250, representing the termination of the particle;
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• delayed branching property: the branching events occur according to exponential
clocks with parameter κ̃. Each branching event consists of two sub-events: the
particle first branches into two and then one of the two descendants branches into
two after a unit of time (within this unit of time, termination could happen but
no extra branching event will occur).

The resulting model will be called the (κ̃, ν̃)-BBM. Unfortunately, both the termin-
ation and the delayed branching properties are not handy to deal with when analyzing
the FPT, due to the reminiscence of the connection to Fisher-KPP equations. Never-
theless, we still expect that a correspondent asymptotic result of the form (13) with an
OP(log log x) error term should at least hold true.

For clarity of our discussions, we take the following detour. It is not unreasonable to
approximate the (κ̃, ν̃)-BBMmodel (conditioned upon non-extinction) with the classical
BBM model that carries the same asymptote for the expected number of particles.
Consider the (κ̃, ν̃)-BBM where 2κ̃ > ν̃, and denote by n(t) := E[#Nt], the expected
number of particles at time t.

Proposition 6. Denote by λ0 > 0 the unique real root to λ0 = −ν̃ + 2κ̃e−λ0. It holds

that n(t) ≍ eλ0t.

Proof. By our construction, and conditioning on the first branching/termination event,
there is

n(t) = e−t(κ̃+ν̃) +

∫ t

0

κ̃ e−(κ̃+ν̃)sn(t− s)ds

+ 2

∫ t

0

κ̃ e−(κ̃+ν̃)s
(
n(t− s− 1)1{s6t−1} + 1{t−1<s6t}

)
ds.

Duhamel’s principle then yields the delay differential equation

n′(t) = −ν̃ n(t) + 2κ̃
(
n(t− 1)1{t>1} + 1{06t<1}

)
. (E.1)

Let us introduce the solution φ(t) = E[#Nt] for 0 6 t 6 1, where 1 6 φ(t) 6 C(κ̃) for
some C(κ̃) > 0. The solution to (E.1) then satisfies the linear autonomous impulsive
delay differential equation

n′(t) = −ν̃ n(t) + 2κ̃ n(t− 1), n|[0,1] = φ|[0,1]. (E.2)

Recall our definition of λ0, which is the root of the characteristic equation associated
with (E.2). That λ0 > 0 follows from 2κ̃ > ν̃. Theorem 1 of [44] then leads to
limt→∞ n(t)e−λ0t = C(φ) for some constant C(φ) depending on φ that is uniformly
bounded when κ̃ 6 1. In other words, n(t) ≍ eλ0t.

Upon solving for λ0, the (κ̃, ν̃)-BBM can be approximated by a scaled BBM with
binary branching and implied branching rate λ0. The diffusivity of the BBM is now set
to s =

√
MSID(1/κ̃)/3 in view of the central limit theorem. This explains the regime

behind the BBM Theory curve in Figure 12(a).
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