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Abstract

We propose a general framework of mass transport between vector-valued measures, which
will be called simultaneous optimal transport (SOT). The new framework is motivated by the
need to transport resources of different types simultaneously, i.e., in single trips, from specified
origins to destinations; similarly, in economic matching, one needs to couple two groups, e.g.,
buyers and sellers, by equating supplies and demands of different goods at the same time. The
mathematical structure of simultaneous transport is very different from the classic setting of
optimal transport, leading to many new challenges. The Monge and Kantorovich formulations
are contrasted and connected. Existence conditions and duality formulas are established. More
interestingly, by connecting SOT to a natural relaxation of martingale optimal transport (MOT),
we introduce the MOT-SOT parity, which allows for explicit solutions of SOT in many interesting
cases.

Keywords: Vector-valued measures, duality, martingale optimal transport, multivariate
convex order, matching
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1 Introduction

Optimal transport theory, originally developed by Monge and Kantorovich (see Villani (2009) for
a history), has wide applications in various scientific fields, including economic theory, operations
research, statistics, machine learning, and quantitative finance. A specialized treatment of optimal
transport in economics is given by Galichon (2016). For a mathematical background on optimal
transport and its applications, we refer to the textbooks of Ambrosio (2003); Santambrogio (2015)
and Villani (2003, 2009).

In this paper, we propose a new framework of optimal transport, which will be called simul-
taneous optimal transport (SOT). In contrast to the classic optimal transport theory, which studies
transports between two measures on spaces X and Y , a simultaneous transport (either Monge or
kernel, with precise formulation in Section 2) moves mass from d measures on X to d measures on
Y simultaneously.

SOT provides powerful tools for matching problems with multiple distributional constraints.
A considerable amount of new challenges and relevant applications arise, which will gradually be
revealed in this paper. The new framework, being mathematically interesting itself, is motivated by
several applications from economics, risk management, and stochastic modeling, which are discussed
in Section 2 and Appendix C. As a primary example (details in Example 1), suppose that several
factories need to supply d types of products to several retailers, and each factory only has one
truck to transport their products to one destination. Since each product type has its own supply
and demand, the objective is to make a transport plan such that all demands are met. In case
d = 1, we speak of the classic optimal transport problem. Another natural example is refugee
resettlement, where refugee families are resettled to different affiliates while fulfilling various quotas
and requirements (Example 2).

We will explain below several sharp contrasts between the new and the classic frameworks,
along with our contributions and results. The following points are ordered by their natural logical
appearance, although the main mathematical results (Theorems 1-4) come a bit later.

First, inspired by the example above, the measures at origin (supplies) do not necessarily have
the same mass as the measures at destination (demands to meet). Obviously, there does not exist a
possible transport if the demands (in any product type) are larger than the supplies, but there can
be transports if the demands are smaller than the supplies. We will say that the SOT problem is
balanced if the vector of total masses at origin is equal to the vector of total masses at destination,
and otherwise it is unbalanced (see Section 2 for a precise definition). Unbalance is generally not
an issue if d = 1 since one can glue a point at the destination which incurs no transport cost to
reformulate the problem as a balanced problem, but such a trick does not work in the SOT setting;
see Section 2 for an explanation. A connection between the balanced and unbalanced settings is
established in Section 4 via a continuity result (Proposition 5).
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Second, one needs to specify a reference measure with respect to which the transport cost is
computed. In classic transport theory, the cost is integrated with respect to the measure at origin
(supply). In the example above, it seems that none of the distributions of the product supplies is a
natural benchmark for computing the cost; neither are their combinations. A separate benchmark
measure needs to be introduced (see Section 2), and it may cause extra technical subtlety depending
on whether it is equivalent to a measure dominating the measures at origin.

Third, for two given d-tuples of (probability) measures, a simultaneous transport may not exist,
even if there are no atoms in these measures (transports between atomless probabilities always exist
in case d = 1). As a trivial example, suppose that there are a continuum of factories, each supplying
an equal amount of product A and product B, and a continuum of retailers, half demanding a ratio
of 2 : 1 between products A and B and the other half demanding a ratio of 1 : 2 between A and B.
If the total demand vector is equal to the total supply vector, then there is obviously no possible
transport plan; indeed, any transport plan would supply the same amount of A and B to any retailer,
leading to over-supplying of one product for each supplier. However, if, instead of a 1 : 1 ratio, half
of the factories supply in a 3 : 1 ratio between A and B, and the other half supply in a 1 : 3 ratio,
then transport plans exist, and we can choose from these plans to minimize the total transport
cost. Moreover, it is easy to see from this example that the SOT problems are not symmetric in
the measures at origin and the measures at destination, in sharp contrast to the classic problem.
Even if transport plans exist, the set which it can be chosen from is bound to additional constraints.
The existence issue of simultaneous transport will be studied in Section 3 using the notions of joint
non-atomicity and heterogeneity order (Proposition 1), based on existing results of Torgersen (1991)
and Shen et al. (2019). Several other interesting inequalities (e.g., Proposition 3) are also discussed
in Section 3.

Fourth, in the balanced setting, the classic transport problem can be conveniently written in the
Kantorovich formulation as each transport corresponds to a joint probability measure with specified
marginals but unspecified dependence structure (or a copula, see e.g., Beare (2010) and Joe (2014)).
In the SOT framework, since there is no “first marginal” or “second marginal” of the problem
(instead, two vectors of marginals), the Kantorovich formulation via joint distributions is less clear
than in the classic case, and it is studied in Section 4. Assuming joint non-atomicity, we prove that
the Monge and Kantorovich (kernel) formulations have the same infimum cost (Theorem 1).

Fifth, a duality theorem for balanced SOT is obtained in Section 4.4, which has a different form
compared with the classic duality formula (Theorem 2). Using the duality result, we construct in
Appendix C a labour market equilibrium model (see e.g., Galichon (2016) for a classic equilibrium
model in case d = 1), where workers, each with several types of skills and seeking to optimize their
wage, are matched with firms, each seeking to employ these skills of a certain cumulative amount to
optimize their profit. The equilibrium wage function and the equilibrium profit function are obtained
from the duality formula for given distributions of the skills that workers supply and firms seek.

Sixth, and most importantly, SOT enjoys a unique connection to the active literature of martin-
gale optimal transport (MOT) between two probability measures, that is, classic optimal transport
with a martingale constraint. The study of MOT, initialized by Beiglböck et al. (2013) in dis-
crete time and Galichon et al. (2014) in continuous time, is motivated by applications in math-
ematical finance, in particular, in robust option pricing. The theory is further reinforced by
Beiglböck and Juillet (2016), Beiglböck et al. (2017) and De March and Touzi (2019), among many
others; see also Henry-Labordère (2017) for a recent survey. In Section 5, we discover an intriguing
connection between SOT and MOT, which we call the MOT-SOT parity, that connects SOT in
the balanced case with a suitable relaxation of MOT (Theorem 3). This connection allows us to
apply techniques from MOT to SOT, thus bridging between two rich topics. In the special case of
two-way transport, i.e., simultaneous transport is possible in both forward and backward directions,
the MOT component of the problem is degenerate, and the SOT problem can be completely solved
(Theorem 4).

In Section 6 we conclude the paper with several other promising directions of future research and
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open challenges. In recent years there has been a growing interest in various generalizations of the
classic Monge-Kantorovich optimal transport problem. A few generalizations of optimal transport
in higher dimensions are related to our paper. To minimize distraction to the reader, we collect them
in Appendix B with some detailed discussions. The closest to our framework is perhaps Wolansky
(2020) who considered a similar setting to our simultaneous transport with a different focus and
distinctive mathematical results.

2 Simultaneous optimal transport

We first briefly review the classic Monge-Kantorovich transport problem. For a measurable space
X that is also a Polish space equipped with the Borel σ-field B(X), we denote by P(X) the set of all
Borel probability measures on X . Consider Polish spaces X,Y , and probability measures µ ∈ P(X)
and ν ∈ P(Y ). Although our results are formulated on general Polish spaces, it does not hurt to
think of X = R

N and Y = R
N as the primary example. We will always equip X × Y with the

product σ-field. In the following while writing A ⊆ X, B ⊆ Y , we always assume that A,B are
Borel measurable subsets. Given a cost function c : X × Y → [0,∞], the classic optimal transport
problem raised by Monge asks for

inf
T∈T (µ,ν)

∫

X

c(x, T (x))µ(dx),

where T (µ, ν) consists of transport maps from µ to ν, i.e., measurable functions T : X → Y such
that µ ◦ T−1 = ν.

Kantorovich later studied a relaxation of Monge’s problem, that is, to solve for

inf
π∈Π(µ,ν)

∫

X×Y

c(x, y)π(dx, dy),

where Π(µ, ν) is the set of transport plans from µ to ν, i.e., the set of probability measures π ∈
P(X × Y ) such that for any A ⊆ X and B ⊆ Y, π(A × Y ) = µ(A) and π(X × B) = ν(B). These
are the celebrated Monge-Kantorovich optimal transport problems.

2.1 Simultaneous transport

Throughout, we denote by d ∈ N the dimension of a vector-valued measure, where the more
interesting case is when d > 2, and by [d] = {1, . . . , d}. We work with d-tuples of finite Borel measures
µ = (µ1, . . . , µd) on X and ν = (ν1, . . . , νd) on Y such that for each j ∈ [d], µj(X) > νj(Y ) > 0.

We propose the new framework of simultaneous optimal transport (SOT) by requiring that a
certain transport map or transport plan sends µj to cover νj simultaneously for all j ∈ [d]. In this
setup, the set of all simultaneous transport maps is defined as

T (µ,ν) := {T : X → Y | µ ◦ T−1 > ν}.

Here and throughout, equalities and inequalities are understood component-wise, and for two meas-
ures µ and ν on the same space, µ > ν means that µ(A) > ν(A) for all measurable A. If
µ(X) = ν(Y ), then we speak of balanced simultaneous transports.

The most natural and intuitive way to describe the set of all (simultaneous) transport plans is
to use K(µ,ν), the set of all stochastic kernels κ such that κ#µ > ν, and defined as

κ#µ(·) :=

∫

X

κ(x; ·)µ(dx) > ν(·). (1)
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Imagine that one would like to distribute goods from a (possibly infinitesimal) point x ∈ X to
different places in Y , then the measure κ(x; ·) describes such a distribution. In view of this definition,
the set of stochastic kernels K(µ,ν) can be written as an intersection:

K(µ,ν) =

d⋂

j=1

K(µj , νj).

In words, a simultaneous transport plan from µ to ν sends simultaneously µj to νj for any j ∈ [d].
The non-emptyness of T (µ,ν) and K(µ,ν) is not guaranteed generally, and will be explained later
in Section 3.1.

In the case d = 1 and µ(X) = ν(Y ), our problem reduces to the classic Monge-Kantorovich
problem. We first illustrate an example for simultaneous transport problems, which sheds some
light on the special structure and technical difference of our problem in contrast to the classic
problem.

Example 1 (Simultaneous transport of supplies). Suppose that there are m factories; each factory
j has aj units of product A and bj units of product B. There are m′ retailers, each demanding a′k
units of A and b′k units of B. We assume that the supply is enough to cover the demand, that is,
with normalization,

1 =

m∑

j=1

aj >

m′∑

j=1

a′k and 1 =

m∑

j=1

bj >

m′∑

j=1

b′k.

If we assume demand-supply clearance, then, with normalization,

m∑

j=1

aj =

m′∑

j=1

a′k =

m∑

j=1

bj =

m′∑

j=1

b′k = 1. (2)

Let µ1 be a probability such that µ1({j}) = aj for each j, and similarly, µ2({j}) = bj for each j,
and ν1({k}) = a′k and ν2({k}) = b′k for each k. Write µ = (µ1, µ2) and ν = (ν1, ν2).

1. A transport in T (µ,ν) or K(µ,ν), if it exists, is an arrangement to send products from factories
to retailers to meet their demand. We cannot transport products within the m′ retailers or
within the m factories.

2. The transport in T (µ,ν) is required to be done in single trips: One factory can only supply
one retailer. This is illustrated in Figure 1 (a). As a practical example, we may think of
the situation where each factory only has one truck that goes to one destination in every
production cycle.

3. We may allow each factory to supply multiple retailers, e.g., a factory with multiple trucks.
In this case, we can use the formulation of transport kernels in K(µ,ν). We note that a non-
trivial constraint imposed by the formulation (1) is that the amount of A and that of B are
proportional in each truck departing from the same factory (e.g., bundled goods, or worker
skills in Appendix C which are not divisible). This is illustrated in Figure 1 (b).

4. If demand-supply clearance (2) holds, then the transport is balanced; otherwise it is unbal-
anced. In case (2) holds, one may consider the backward direction of transporting ν to µ, and
this leads to two-way transports treated in Section 5.

Example 1 and its continuous version will serve as a primary example to facilitate the under-
standing of our new framework. To quantify the cost of simultaneous transports, a cost function will
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(a) Monge (b) Kernel

Figure 1: A showcase of simultaneous transport of supplies; red and blue represent different types
of products.

be associated to the simultaneous transport problem, as in the classic formulation. Throughout, we
define the normalized average measures

µ̄ :=

∑d
j=1 µj∑d

j=1 µj(X)
and ν̄ :=

∑d
j=1 νj∑d

j=1 νj(Y )
, (3)

which are probability measures. In case µ1, . . . , µd are themselves probability measures, µ̄ is their
arithmetic average. Consider a measurable function c : X × Y → [0,∞] and a reference probability
measure η on X such that η ≪ µ̄. We define the transport costs as follows: for T ∈ T (µ,ν), let

Cη(T ) :=

∫

X

c(x, T (x))η(dx). (4)

Such a reference measure η allows us the greatest generality in view of Example 1: We allow
nonlinear dependencies of η in terms of µ, for example, when computing the petrol cost which is
nonlinear in weights of the transported products. We impose the condition η ≪ µ̄ because it would
be unreasonable to assign a cost where there is no transport. (For general η ∈ M(X), we can always
normalize it to a probability without loss of generality.)

In terms of κ ∈ K(µ,ν), we define the transport cost

Cη(κ) :=

∫

X×Y

c(x, y)η ⊗ κ(dx, dy). (5)

The quantities of interest are the minimum (or infimum) costs

inf
T∈T (µ,ν)

Cη(T ) and inf
κ∈K(µ,ν)

Cη(κ),

as well as the optimizing transport map and kernel. If T (µ,ν) or K(µ,ν) is an empty set, the
corresponding minimum cost is set to ∞. In dimension d = 1 and when η = µ̄, this cost coincides
with the classic Monge-Kantorovich costs. In case η = µ̄, we omit the subscript η in (4) and (5).
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Example 2 (Refugee resettlement). Refugee resettlement is an active problem in operations research
(Delacrétaz et al. (2016) and Ahani et al. (2021)). Let F = {F 1, . . . , F I} denote the set of refugee
families, where each family F i consists of members F i = {f i,1, . . . , f i,Ji}. Our goal is to resettle
these refugee families to affiliates L = {L1, . . . , LN}, such as different cities across USA. There are
various quotas Q = {Q1, . . . , QK} to be fulfilled by each family, such as the numbers of adults and
children. Let qik denote the contribution of quota k by family i. Each quota Qk must exceed qℓ

k

in the affiliate Lℓ. The constraints are twofold: each family member in a refugee family must be
resettled to the same affiliation, and the quota requirements are satisfied. To each family-affiliation
match is attached a quality score viℓ, such as the total employment outcome. These lead to the
following integer optimization problem:

maximize
∑

i

∑

ℓ

viℓz
i
ℓ,

subject to ziℓ ∈ {0, 1} and
∑

ℓ

ziℓ 6 1 for all i;

∑

i

qikz
i
ℓ > qℓ

k
for all ℓ, k. (6)

To see this is within the SOT framework (1), we let X = F and Y = L, and define measures
(µ1, . . . , µ|Q|) on X by µk({F i}) = qik and (ν1, . . . , ν|Q|) on Y by νk({Lℓ}) = qℓ

k
. The cost function

is −viℓ. The condition ziℓ ∈ {0, 1} asserts that the problem is Monge, corresponding to the fact
that each family may be resettled only in one affiliate. Our formulation differs from the original
formulations in Delacrétaz et al. (2016) and Ahani et al. (2021) where the “ > ” in (6) is “ 6 ”, thus
a “dual SOT problem” unbalanced in an opposite direction.

In general, if the supports of µ̄, ν̄ are both finite (e.g., Example 1), then the optimal transport
problem is equivalent to a finite-dimensional linear programming problem, which can be handled
conveniently by linear programming solvers. The dimension d > 2 of µ and ν leads to more
constraints in this linear program compared to the classic case of d = 1. These additional constraints
are highly non-trivial. For instance, the additional constraints may rule out the existence of any
transport, in contrast to the case d = 1; see Section 3.1.

2.2 Balanced simultaneous transport

Although we have set up the problem in greater generality with unbalanced measures, in some
parts of this paper we will focus on the balanced case where µ(X) = ν(Y ). We may without loss of
generality assume that each µj , νj are probability measures. In this case, we have

T (µ,ν) = {T : X → Y | µ ◦ T−1 = ν}

and
K(µ,ν) = {κ | κ#µ = ν}.

The two examples below illustrate some particular applications of this setting, in addition to the
supply-demand clearing case (2) of Example 1.

Example 3 (Financial cost efficiency with multiple distributional constraints). Let (X,F) be a
measurable space on which µ1, . . . , µd are d probability measures and L be the set of random variables
on (X,F). Let ν1, . . . , νd be d distributions on R and define

Lν(µ) := {L ∈ L | L law∼ µi
νi, i ∈ [d]}

where L
law∼ µ ν means that L has distribution ν under µ. The set Lν(µ) represents all possible

financial positions which has distribution νj under a reference probability µj . As an example in
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case d = 2, an investor may seek for an investment L which has a target distribution ν1 under her
subjective probability measure µ1 and is bound by regulation to have a distribution ν2 under a reg-
ulatory measure µ2; see Shen et al. (2019, Section 5). The investor is interested in the optimization
problem

min {Eη[f(L)] | L ∈ Lν(µ)} , (7)

where η ≪ µ̄ and f is a nonnegative measurable function. If the probability measure η is a pricing
measure on the financial market, then the optimization problem (7) is to find the cheapest financial
position f(L) with L satisfying the distributional constraints. In case d = 1, i.e., with only one
distributional constraint, this problem is the cost-efficient portfolio problem studied by Dybvig
(1988), which can be solved by the classic Fréchet-Hoeffding inequality (e.g., Rüschendorf (2013)).
For d > 2, the problem becomes much more complicated, and a special case of mutually singular
µ1, . . . , µd is studied by Wang and Ziegel (2021) as the basic tool for representing coherent scenario-
based risk measures.

Note that by definition Lν(µ) = T (µ,ν). Hence, L ∈ Lν(µ) is a balanced Monge transport from
µ to ν, and

E
η[f(L)] =

∫

X

f(L(ω))η(dω),

which is simply the transport cost of L as a Monge transport, with cost function c(x, y) = f(y) and
reference measure η. We will see from Theorem 1 that if f is continuous and µ is jointly atomless,
then the infimum of the cost is the same as the infimum cost among the corresponding transport
plans. If η ∼ µ̄, further duality results from Section 4.4 are applicable.

Example 4 (Time-homogeneous Markov processes with specified marginals). Let µ1, . . . , µT be
probability measures on X = R

N and ξ = (ξt)t=1,...,T be an R
N -valued Markov process with

marginal distributions µ1, . . . , µT . The Markov kernels of ξ, κt : RN → P(RN ) for t = 1, . . . , T − 1,
are such that κt(x) is the distribution of ξt+1 conditional on ξt = x. Here and throughout conditional
distributions (probabilities) should be understood as regular conditional distributions (probabilities).
The Markov process ξ is time-homogeneous if κ := κt does not depend on t. In other words, κ needs
to satisfy

µt+1 =

∫

RN

κ(x)µt(dx) for t = 1, . . . , T − 1.

Therefore, the distribution of a time-homogeneous Markov process with marginals (µ1, . . . , µT ) cor-
responds to the Markov kernel κ ∈ K(µ,ν) where µ = (µ1, . . . , µT−1), and ν = (µ2, . . . , µT ), which
is a simultaneous transport kernel. With the tool of SOT, we can study optimal (in some sense)
time-homogeneous Markov processes. A special case of this example will be given in Proposition 2.

In the classic optimal transport framework with d = 1, an unbalanced transport problem can
be converted to a balanced transport problem by adjoining a point y0 to the space Y with mass
µ(X) − ν(Y ) and such that c(x, y0) = 0 for all x. However, for d > 2 the two problems are not
equivalent. The reason that the conversion works for d = 1 is that the set of unbalanced transports

K(µ,ν) = {κ | κ#µ > ν} = {κ | κ#µ = ν̃ for some ν̃ > ν}

is identical to the set of transports

K′(µ,ν) := {κ | κ#µ̃ = ν for some µ̃ 6 µ}.

This is not necessarily true in case d > 2. For example, take µ1 = µ2 be two times the Dirac
measure at 0, ν1 be uniform on [−1, 0] and ν2 uniform on [0, 1]. Then the kernel κ sending 0
uniformly to [−1, 1] belongs to K(µ,ν) while K′(µ,ν) is clearly empty. This subtle issue also hints
on the additional technical challenges when dealing with simultaneous transports.
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2.3 Assumptions and standing notation

We will focus on different levels of generality in the subsequent sections, with the following
hierarchical structure on the imposed assumptions. As we will see, the assumption η ∼ µ̄ is necessary
for the Kantorovich reformulation to make sense.

i. In Sections 3 and 4.1 through 4.3, we will prove general results in the unbalanced setting;

ii. in Sections 4.4 and 5 we work within the balanced setting;

iii. in Section 5.3 we further require that both K(µ,ν) and K(ν,µ) are non-empty; that is, we
consider two-way transports.

In terms of the reference measure we have the following hierarchy of considerations.

i. In Section 3 we make no further assumption on the reference measure η except that η ≪ µ̄;

ii. in Section 4 we assume that η ∼ µ̄;

iii. in Section 5 and throughout our examples we assume for simplicity that η = µ̄.

The hierarchical structure of assumptions is summarized in Table 1.

Table 1: Assumptions across sections

Section Tuples of measures µ and ν Reference η

3 Possibly unbalanced η ≪ µ̄

4.1-4.3 Possibly unbalanced η ∼ µ̄

4.4 Balanced η ∼ µ̄

5.1-5.2 Balanced η = µ̄

5.3 Balanced and two-way η = µ̄

Throughout, we consider the general setting where X and Y are Polish spaces, unless otherwise
stated. We let 1A stand for the indicator of a set A, and R+ := [0,∞). The set M(X) is the
collection of all finite and non-zero Borel measures on X .

3 Existence, inequalities, and examples

In the study of SOT and its structure, the Radon-Nikodym derivatives of µ,ν with respect to
µ̄, ν̄ play a crucial role. For this reason, we recall (3) and introduce the shorthand notation

µ′ =
dµ

dµ̄
and ν ′ =

dν

dν̄
. (8)

We also denote by mµ and mν the laws of µ′ under µ̄ and of ν ′ under ν̄. Note that both mµ and
mν are probability measures on R

d.

3.1 Existence of simultaneous transports

We first state a condition to guarantee that K(µ,ν) and T (µ,ν) are non-empty. The following
definition is adapted from Shen et al. (2019) where µ(X) = ν(Y ) is assumed. Let us emphasize
that the paper Shen et al. (2019) is only related to the existence of simultaneous transports, and is
independent of everything else discussed in this paper.
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Definition 1. We say that µ ∈ M(X)d is jointly atomless if there exists a random variable ξ :
X → R such that under µ̄, ξ is atomless and independent of µ′.

Remark 1. Shen et al. (2019) called the notion of joint non-atomicity in Definition 1 as “conditional
non-atomicity”. We choose the term “joint non-atomicity” because this notion is indeed a collective
property of (µ1, . . . , µd), and it is stronger than non-atomicity of each µj . There are many parallel
results between non-atomicity for d = 1 and joint non-atomicity for d > 2; see Remark 4.

Proposition 1 (Torgersen (1991); Shen et al. (2019)). Let µ ∈ M(X)d and ν ∈ M(Y )d.

(i) The set K(µ,ν) is non-empty if and only if mµ �icx mν , where �icx is the multivariate
increasing convex order.1

(ii) Assume that µ is jointly atomless. The set T (µ,ν) is non-empty if and only if mµ �icx mν .

In particular, it follows from Proposition 1 that K(µ,ν) and K(ν,µ) are both non-empty if and
only if mµ = mν . We also note that mµ �icx mν implies µ(X) > ν(Y ) by taking a linear function
f(x1, . . . , xd) = xj for j ∈ [d] in the definition of the increasing convex order. Hence, it makes sense
to discuss the set K(µ,ν) under this condition.

Remark 2. In Definition 1, if µ(X) = ν(Y ), then mµ �icx mν is equivalent to mµ �cx mν , where
�cx is the multivariate convex order.2

Remark 3. To understand mµ �icx mν intuitively, one could look at some special cases (treated in
Proposition 3.7 of Shen et al. (2019)), by assuming µ(X) = ν(Y ). Suppose that K(µ,ν) is non-
empty. Then µ has identical components ⇒ so does ν; µ has equivalent components ⇒ so does ν;
ν has mutually singular components ⇒ so does µ. Moreover, µ has mutually singular components
or ν has identical components ⇒ K(µ,ν) is non-empty.

In case µ(X) > ν(Y ) in which equality does not hold, simple sufficient conditions exist. For
example, suppose that

min
j∈[d]

(µj(X)) >

(
max
j∈[d]

νj

)
(Y ),

then K(µ,ν) is non-empty.3 To see this, we may assume each µj is a probability measure. For
ν := (maxj νj)/((maxj νj)(Y )), we have that K(µ, (ν, . . . , ν)) is non-empty since the constant kernel
x 7→ ν is in K(µ, (ν, . . . , ν)). Then for κ ∈ K(µ, (ν, . . . , ν)),

κ#µj = ν =
maxj∈[d] νj

(maxj∈[d] νj)(Y )
> max

j∈[d]
νj > νj .

This shows κ ∈ K(µ,ν).

We record an immediate corollary of Proposition 1 for the subsequent analysis, which can also
be shown by directly using definition.

Corollary 1. Suppose that µ,ν,η are R
d-valued probability measures on Polish spaces such that

K(µ,ν) and K(ν,η) are non-empty. Then K(µ,η) is non-empty.

Proposition 1 can also be applied to give a necessary condition for the existence of a time-
homogeneous Markov process (see Example 4) for centered Gaussian marginals on R.

Proposition 2. Suppose that µt = N(0, σ2
t ), σt > 0, t = 1, . . . , T . For the existence of a trans-

port from (µ1, . . . , µT−1) to (µ2, . . . , µT ), it is necessary that the mapping t 7→ σt on {1, . . . , T } is
increasing log-concave or decreasing log-convex. If T = 3, this condition is also sufficient.

1This means
∫
f(µ′) dµ̄ >

∫
f(ν′) dν̄ for all increasing convex f : Rn → R such that the integrals are well-defined.

2This means
∫
f(µ′) dµ̄ >

∫
f(ν′) dν̄ for all convex functions f : Rn → R such that the integrals are well-defined.

3For a collection of (signed) measures µj , j ∈ J on X, their maximum (or supremum) is defined as supj∈J µj(A) =
sup{

∑
j∈J µj(Aj) |

⋃
j∈J Aj = A and Aj are disjoint} for A ⊆ X. Moreover, the positive part of µ, denoted by µ+,

is max{µ, 0} where 0 is the zero measure.
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The necessary condition in Proposition 2 is not sufficient for T > 3. See Appendix A.1 for a
counterexample. In the case T = 3, the Markov process in Proposition 2 can be realized by an
AR(1) process with Gaussian noise.

3.2 Some simple lower bounds for on the minimum cost

We collect some lower bounds for the infimum cost based only on classic (d = 1) transports.
Since every κ ∈ K(µ,ν) transports each µj to cover νj , it must transport each λ · µ to cover λ · ν
for λ ∈ R

d
+. Denoting by ∆d the standard simplex in R

d, we have

K(µ,ν) ⊆
⋂

λ∈∆d

K(λ · µ,λ · ν).

Therefore, we obtain

inf
κ∈K(µ,ν)

Cη(κ) > sup
λ∈∆d

inf
κ∈K(λ·µ,λ·ν)

Cη(κ). (9)

In particular, if κ ∈ K(µ̄, ν̄) is an optimal transport from µ̄ to ν̄ and κ ∈ K(µ,ν), then κ is also
an optimal transport from µ to ν. However, as we will see in Example 6, the inequality (9) is not
sharp in general.

We record yet another lower bound for the minimum cost as an application of the kernel formu-
lation. For simplicity we consider the balanced setting. The following proposition follows intuitively
by observing that, for example in case d = 2, the parts where ν1 > ν2 must be transported from the
parts where µ1 > µ2 (see Figure 2).

µ1

µ2

ν1

ν2

Figure 2: Part of the shaded region (µ1 − µ2)+ on the left is transported to cover all of the shaded
region (ν1 − ν2)+ on the right; similarly, part of the gray region (µ2 − µ1)+ is transported to cover
all of the gray region (ν2 − ν1)+.

Proposition 3. Suppose that µ(X) = ν(Y ), and for each x ∈ X, c(x, y) = 0 for some y ∈ Y . Then

inf
κ∈K(µ,ν)

Cη(κ) > max
i,j∈[d]

(
inf

κ∈K((µi−µj)+,(νi−νj)+)
Cη(κ) + inf

κ∈K((µj−µi)+,(νj−νi)+)
Cη(κ)

)
. (10)

In particular, if (µi − µj)+(X) < (νi − νj)+(Y ) for some i, j ∈ [d], then both sides of (10) are equal
to ∞.

Note that the quantities on the right-hand side of (10) arise from two separate one-dimensional
transport problems. Such problems are well-studied in the optimal transport literature; see Santambrogio
(2015); Villani (2003, 2009).

If µ1, . . . , µd have mutually disjoint supports (in particular, if d = 1), then the simultaneous
transport problem is reduced to d classic transport problems and the optimal cost is the sum of
corresponding optimal costs. In this case, (9) is sharp, and (10) is also sharp when d = 2.
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3.3 Peculiarities of the simultaneous transport

We consider a few simple but instructional examples showing that simultaneous transport is very
different from classic transport (d = 1). We will focus on the balanced case (i.e., µ(X) = ν(Y )) for
simplicity.

We first provide some immediate observations which help to explain some novel features of
simultaneous transport and its connection to the classic optimal transport problem. Denote by
µ′j(x), ν′j(y) the corresponding Radon-Nikodym derivatives of µj , νj with respect to µ̄, ν̄, respectively.

First, suppose that η ∼ µ̄. If there exist measurable functions φ on X and ψ = (ψ1, . . . , ψd) on
Y such that

c(x, y) = φ(x) +ψ(y)⊤
dµ

dη
(x),

then all transports (should any exist) from µ to ν have the same cost

∫

X×Y

c d(η ⊗ κ) =

∫

X

φdη +

∫

Y

ψ⊤dν, (11)

because κ#µ = ν. This extends the fact that in the case d = 1, the cost functions of the form
c(x, y) = φ(x) + ψ(y) are trivial and can be “decomposed into marginal costs”. We now have a
larger class of such cost functions. If η = µ̄, then a term ψ(y) for ψ : Y → R can also be included
in c(x, y), by noting that

ψ(y) =
1

d
ψ(y)1 · dµ

dµ̄
(x).

Moreover, (11) also hints on how a duality result would look like in this setting, which will be
discussed in Section 4.4.

Example 5. Consider X = R on which Borel probability measures µ are supported and η = µ̄.
Assume that µ′1 is linear in x ∈ R on the support of µ̄, say, equal to ax + b, a 6= 0. Let ν be
probability measures on R such that K(µ,ν) is non-empty. Consider a quadratic cost function
c(x, y) = (x− y)2. Then we may write

c(x, y) = x2 + (ax + b)

(
−2y

a

)
+

(
y2 +

2by

a

)
.

Therefore, for any κ ∈ K(µ,ν),

C(κ) =

∫

X

x2µ̄(dx) +

∫

Y

(
y2 +

2by

a

)
ν̄(dy) − 2

a

∫

Y

y ν1(dy).

Example 6. As a concrete but slightly more general example, we consider X = Y = [0, 1] on
which Borel probability measures µj , νj , j = 1, 2 are supported. Assume µ1 has density 2x and
µ2 has density 2 − 2x with respect to Lebesgue measure on [0, 1], and ν1 = ν2 be any identical
probability measures on [0, 1] such that ν1((1/4, 3/4)) = 1/2 (see Figure 3). Thus the Radon-
Nikodym derivatives are µ′1(x) = 2x and ν′1(y) = 1. Denote the set A = (1/4, 3/4) × ([0, 1/4) ∪
(3/4, 1]) and consider the cost function

c(x, y) = (x− y)2 + α1A, α > 0.

For any s ∈ [0, 1/2] and any S such that ν1(S) = 1 − 2s, the transport kernel

κ(x;B) :=
ν1(B ∩ S)

ν1(S)
1{x∈(s,1−s)} +

ν1(B \ S)

ν1([0, 1] \ S)
1{x∈[0,s]∪[1−s,1]}

belongs to K(µ,ν). In case S = (1/4, 3/4) and s = 1/4, we denote such a transport by κ0.

12



We show that κ0 is indeed an optimal transport. Similarly as in Example 5, for a kernel κ ∈
K(µ,ν) we compute its transport cost

C(κ) =
1

3
+

∫ 1

0

(y2 − y)ν̄(dy) + α(µ̄⊗ κ)(A) >
1

3
+

∫ 1

0

(y2 − y)ν̄(dy),

where inequality holds if and only if (µ̄ ⊗ κ)(A) = 0. Since by definition κ0(x; (1/4, 3/4)) = 1 for
x ∈ (1/4, 3/4), we have (µ̄⊗ κ0)(A) = 0. Therefore, κ0 is an optimal transport.

µ1µ2

η = µ̄

ν1 = ν2

Figure 3: Densities of µ and ν in Example 6.

Trivial as it looks, Examples 5 and 6 provide us some interesting aspects of the SOT in contrast
to the classic optimal transport.

i. It is well-known that for the classic Kantorovich transport problem in R, if the cost function is
a convex function in y − x, then the comonotone map is always optimal (see e.g., Theorem 2.9
of Santambrogio (2015)). However, this effect no longer exists in simultaneous transport, since
there may not exist an admissible comonotone map.

ii. It is also easy to see that the equality in (9) may not hold, for example when ν1 is uniform on
[0, 1]. In addition, the inequality (10) becomes trivial since it gives a lower bound 0.

After developing our theory, we discuss a few more interesting examples in Section 5.3.

4 General properties of simultaneous optimal transport

Recall we consider d-tuples of finite measures µ = (µ1, . . . , µd) on X and ν = (ν1, . . . , νd) on Y ,
and a reference measure η ∼ µ̄. Also recall that µ′,ν ′ denote the Radon-Nikodym derivatives of
µ,ν with respect to µ̄, ν̄.

4.1 The Kantorovich formulation

Sometimes it is mathematically more convenient to adopt the Kantorovich formulation, which
describes the set of all transport plans as probability measures in P(X × Y ). More precisely, for a
probability measure η ∼ µ̄, we define

Πη(µ,ν) := {η ⊗ κ | κ#µ > ν}.

13



The subscript η incorporates the way we calculate costs: see (4) and (5). It is immediate that

inf
π∈Πη(µ,ν)

C(π) := inf
π∈Πη(µ,ν)

∫

X×Y

c(x, y)π(dx, dy) = inf
κ∈K(µ,ν)

Cη(κ). (12)

Equivalently, we have the following reformulation for Πη(µ,ν). We call this the Kantorovich
reformulation, whose reasons are explained below.

Proposition 4. For each η ∼ µ̄, we have

Πη(µ,ν) =

{
π ∈ P(X × Y ) | π(dx× Y ) = η(dx) and

∫

X

dµ

dη
(x)π(dx, dy) > ν(dy)

}
. (13)

In a way similar to Proposition 4, in the balanced case, i.e., µ(X) = ν(Y ), we have

Πη(µ,ν) =

{
π ∈ P(X × Y ) | π(dx × Y ) = η(dx) and

∫

X

dµ

dη
(x)π(dx, dy) = ν(dy)

}
. (14)

In particular, if η = µ̄, we denote by Π(µ,ν) = Πµ̄(µ,ν), and (14) reads as

Π(µ,ν) =

{
π ∈ P(X × Y ) | π(dx × Y ) = µ̄(dx) and

∫

X

µ′(x)π(dx, dy) = ν(dy)

}
. (15)

It seems worthwhile to explain the similarities and differences of (15) compared to the classic
definition Π(µ, ν) in the case d = 1 (see (17) below). First, by summing over and normalizing the
second constraint in (15), we see that π is a transport from µ̄ to ν̄. Thus, one may think of π(A×B)
as the amount of µ̄-mass moving from A to B. With j ∈ [d] fixed, the second constraint in (15)
means that the mass sent from the contribution of µj covers exactly the corresponding portion of
νj in Y .

We can reformulate (15) as

Π(µ,ν) =

{
π ∈ P(X × Y ) |

∫

X×Y

f(x)π(dx, dy) =

∫

X

f dµ̄ and

∫

X×Y

µ′(x)g(y)π(dx, dy) =

∫

Y

g dν for all measurable f, g

}
. (16)

In the case d = 1, our formulation coincides with the classic Kantorovich formulation, where the
admissible transports are defined as

Π̃(µ, ν) := {π ∈ P(X × Y ) | π(dx × Y ) = µ(dx) and π(X × dy) = ν(dy)}. (17)

In some sense, one can also recover transports in Π̃(µj , νj) from Π(µ,ν). For example, taking
f(x) = 1{x∈A}µ

′
j(x) and g(y) = 1{y∈B} in (16), we have for any j ∈ [d], the measure µ′j(x)π(dx, dy)

belongs to Π̃(µj , νj).
Unlike the classic Kantorovich optimal transport problem in the case d = 1, the simultaneous

transport problem is not symmetric with respect to the measures µ,ν, as expected from Proposi-
tion 1. It seems unlikely that Π(µ,ν) can be defined in a similar way as (17) using only projections
of measures. The fact that the classic Kantorovich formulation uses projections and is symmetric,
is nothing more than a nice consequence of the kernel formulation and does not reflect the general
structure.
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4.2 Equivalence between Monge and Kantorovich costs

Below, we prove that under suitable conditions, the set of transport maps and plans have the
same infimum cost. This serves as an extension of Theorem 2.1 of Ambrosio (2003) in the case d = 1
and we also assume for simplicity that µ̄, ν̄ have compact supports. As expected from Proposition 1,
joint non-atomicity plays an important role since it guarantees the existence of Monge transports.

We first prove the following more general result using the kernel formulation. Observe that for
a Monge transport T ∈ T (µ,ν), we can associate a kernel κT ∈ K(µ,ν) defined by κT (x;B) :=
1{T (x)∈B}. In view of (4) and (5), they have the same transport cost.

Theorem 1 (Cost equality). Let η ∼ µ̄. Suppose that X,Y are compact spaces on which µ,ν are
supported, µ is jointly atomless, and c is continuous. Then the transport plans and transport maps
admit the same infimum cost. That is,

inf
κ∈K(µ,ν)

Cη(κ) = inf
T∈T (µ,ν)

Cη(T ).

Combining with (12) yields the following.

Corollary 2. Consider a reference measure η ∼ µ̄. Suppose that X,Y are compact spaces on which
µ,ν are supported, µ is jointly atomless, and c is continuous, then Monge and Kantorovich transport
costs have the same infimum value. That is,

inf
π∈Πη(µ,ν)

C(π) = inf
T∈T (µ,ν)

Cη(T ).

The proof of Theorem 1 follows a similar path as the classic result in the case d = 1, except that
we need a few new lemmas on joint non-atomicity. Recall from the classic proof that non-atomicity
allows us to approximate a transport plan using a transport map on each small piece of X . In our
setting, we need joint non-atomicity to achieve this; see Proposition 1.

Remark 4. Heuristically, there is a parallel between non-atomicity in the classic setting and joint
non-atomicity in our setting. For example,

i. Under joint non-atomicity, a Monge transport exists if and only if a Kantorovich transport
exists (Proposition 1)4. In d = 1 with non-atomicity, this equivalence also holds, although a
Kantorovich transport between µ and ν exists as soon as µ and ν have the same mass.

ii. Marginal non-atomicity is equivalent to the existence of a uniform random variable and joint
non-atomicity is equivalent to the existence of a uniform random variable independent of a
σ-field (Lemma A.1).

iii. The joint non-atomicity condition enables us to conclude Monge and Kantorovich problems have
the same infimum (Corollary 2), which is true in the case d = 1 given marginal non-atomicity.

4.3 Connecting the balanced and unbalanced settings

So far we have discussed SOT in the unbalanced setting. In real applications such as the setting
of Example 1, it likely holds that µ(X) > ν(Y ) with strict inequality in some components. For
instance, in an economy, the total demand for each product may be approximately 95% of the total
supply, leading to ν(Y ) ≈ 0.95 × µ(X).

As we will see in the subsequent sections, results on duality, equilibria, and the MOT-SOT parity
will be obtained in the setting of balanced transport, since the balanced setting has much richer
mathematical structure than the unbalanced setting.

4The converse does not hold. There are examples where µ is not jointly atomless but there exists a unique
Kantorovich transport that is also Monge.
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Nevertheless, we show below that the balanced setting of simultaneous transport can be used as
an approximation of the unbalanced setting. A special situation is when ν(Y ) ≈ (1 − ε)×µ(X) for
a small ε > 0, which is more realistic in applications.

Suppose that νn 6 ν for n ∈ N and νn → ν weakly as n → ∞. By definition, K(µ,ν) ⊆
K(µ,νn), which means that each transport from µ to ν is also a transport from µ to νn. Moreover,
under a continuity assumption, the minimum transport cost from µ to ν is the limit of that from µ

to νn. Therefore, an optimal transport from µ to ν can be seen as a nearly optimal transport from
µ to νnn . Note that µ(X) = ν(Y ) is not needed for this continuity result.

Proposition 5. Suppose that X,Y are compact Polish spaces, µ ∈ M(X)d, and dµ/dη and c
are continuous. Suppose that (νn)n∈N ⊆ M(Y )d is a sequence of measures converging weakly to
ν ∈ M(Y )d such that νn 6 ν for each n ∈ N. Then

lim
n→∞

inf
π∈Πη(µ,νn)

C(π) = inf
π∈Πη(µ,ν)

C(π).

Proposition 5 provides a link between two settings, allowing us to use results in the balanced
setting to approximate the unbalanced setting. Starting from the next section, we concentrate on
the balanced setting.

4.4 Duality for simultaneous optimal transport

Consider R
d-valued measures µ,ν on Polish spaces X,Y satisfying µ(X) = ν(Y ) (e.g., when

they are probability measures), a reference probability η ∼ µ̄, and µ,ν are absolutely continuous
with respect to µ̄, ν̄ with densities µ′ on X and ν ′ on Y respectively. Also recall that (14) is the set
of all transport plans from the vector-valued measure µ to the vector-valued measure ν.

We give a duality theorem for SOT on Polish spaces. A detailed proof will be provided in
Appendix A.2.

Theorem 2 (Duality). Suppose that X,Y are Polish spaces, η ∼ µ̄ with both dµ/dη and dη/dµ̄
bounded continuous, and c : X × Y → [0,∞] is lower semi-continuous.5 Duality holds as

inf
π∈Πη(µ,ν)

∫

X×Y

c dπ = sup
(φ,ψ)∈Φc

∫

X

φdη +

∫

Y

ψ⊤dν, (18)

where

Φc =

{
(φ,ψ) ∈ C(X) × C(Y )d | φ(x) +ψ(y) · dµ

dη
(x) 6 c(x, y)

}
.

Moreover, the infimum in (18) is attained.

In the case d = 1 and η = µ, this recovers Theorem 1.3 in Villani (2003) under the assumption
of compactness. If η = µ and µ′ is upper semi-continuous, this result is a special case of the more
general moment-type duality formula; see Rachev and Rüschendorf (1998).

If dη/dµ̄ is bounded (e.g., when η = µ̄), even if X,Y are not compact, we still have Πη(µ,ν) is
tight and hence weakly relatively compact. This follows from the definition of tightness and

ν̄(B) =

∫

X×B

dµ̄

dη
(x)π(dx, dy) >

(
sup
x∈X

dη

dµ̄
(x)

)−1
π(X ×B).

Furthermore, if η = µ̄, Π(µ,ν) is weakly compact if µ′ is assumed to be continuous, as can be seen
by taking limits in (16).

5Recall that a function f is lower semi-continuous if and only if for any y ∈ R, {x | f(x) > y} is open.
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In the case where η ≪ µ̄ but µ̄ 6≪ η, we still have the lower bound

inf
κ∈K(µ,ν)

∫

X×Y

c(x, y)η ⊗ κ(dx, dy) > sup
(φ,ψ)∈Φc

∫

X

φdη +

∫

Y

ψ⊤dν,

where

Φc :=

{
(φ,ψ) ∈ C(X) × Cd(Y ) | φ(x)dη(x) +ψ(y)⊤dµ(x) 6 c(x, y)dη(x)

}
.

This is because for (φ,ψ) ∈ Φc and κ ∈ K(µ,ν),

∫

X

φdη +

∫

Y

ψ⊤dν =

∫

X×Y

φ(x)η ⊗ κ(dx, dy) +

∫

X×Y

ψ(y)⊤µ⊗ κ(dx, dy)

6

∫

X×Y

c(x, y)η ⊗ κ(dx, dy).

5 MOT-SOT parity

Consider µ ∈ M(X)d and ν ∈ M(Y )d where for simplicity X,Y are Euclidean spaces, and
recall our notation µ̄, ν̄,µ′,ν ′,mµ,mν from (3) and (8). By the disintegration theorem, there exist
measures {µz}z∈Rd

+
such that

µz(X \Az) := µz

(
X \ (µ′)−1(z)

)
= 0

and for any Borel measurable function f : X → [0,∞),

∫

X

f(x)µ̄(dx) =

∫

Rd
+

∫

Az

f(x)µz(dx)mµ(dz).

Moreover, the family of measures {µz}z∈Rd
+

is uniquely determined for mµ-a.s. z ∈ R
d
+. Similarly

for z′ ∈ R
d
+ we define Bz

′ ⊆ Y and a probability measure νz′ on Y .
We recall that given probability measures µ, ν, a coupling (X,Y ) is called a martingale transport

if (X,Y ) forms a martingale, and we denote by M(µ, ν) the set of all such couplings, which can be
further identified as stochastic kernels.

We have seen from Proposition 1 that the existence of a (balanced) simultaneous transport from
µ to ν is equivalent to mµ �cx mν . This naturally gives rise to a martingale transport from mν to
mµ in view of Strassen’s theorem (Strassen (1965)). Such a martingale transport, seen as a coupling,
encodes the way we take combinations of the (Rd-valued) derivatives µ′ to form the derivatives ν ′.
The martingale constraint is equivalent to the constraint of mixing µ′ to get ν ′. Essentially, at this
step, we do not “distinguish” the points in Az since µ′ is constant there, but treat the set Az as a
single point; the same applies to Bz. Of course, such a martingale transport may not be unique (in
fact, for two-way transports it is unique). This choice of a martingale transport can be seen as the
first layer of freedom for a simultaneous transport from µ to ν. The second layer of freedom is how
to transport on each slice from Az to Bz, where now we do not treat them as single points, but equip
the measure µz, νz on them. In comparison, the martingale transport treats them as points, which
can be regarded as an “integrated version”. In particular, this extends our results on the two-way
transport. In some nice cases, the optimization problem reduces to classic optimization problems
that admit explicit solutions.

In this section, we will often encounter transport from (Rd+×[0, 1],mµ×τ) to (Rd+×[0, 1],mν×τ).
To simplify formulas, we will write κx(·) as κ(x; ·) for a stochastic kernel κ, where x often has two
components.
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5.1 Connecting MOT and SOT

Let τ be the Lebesgue measure on [0, 1] and write R = R
d
+ × [0, 1]. The set of couplings between

(R,mµ × τ) and (R,mν × τ) that are backward martingale in the first marginal is given by

{((X,U), (X ′, U ′)) ∈ Π̂(mµ × τ,mν × τ) | E[X |(X ′, U ′)] = X ′},

where Π̂ is the set of random vectors having distributions in Π. We disintegrate such couplings into
stochastic kernels, and denote by Mb,1 the corresponding collection of stochastic kernels. Formally,
Mb,1 is the set

{
κ̂ ∈ K(mµ × τ,mν × τ) |

∫

R

κ̂(z,u)(Z ′ × V )zτ(du)mµ(dz) =

∫

Z′

z′τ(V )mν(dz′) ∀Z ′ × V ⊆ R
}
.

For z, z′ ∈ R
d
+, define also the sets of stochastic kernels

Kz = K(µz, δz × τ) and K̃z
′ = K(δz′ × τ, νz′ ).

Since τ is atomless, there exist kernels κz ∈ Kz, κ̃z′ ∈ K̃z
′ that are backward Monge and Monge,

respectively.

Theorem 3 (MOT-SOT parity). Suppose that µ(X) = ν(Y ). Fix arbitrary collections of kernels

κz ∈ Kz, κ̃z′ ∈ K̃z
′ indexed by z, z′ ∈ R

d
+, where κz is backward Monge, κ̃z′ is Monge, and z 7→ κz

and z′ 7→ κ̃z′ are measurable. Every κ ∈ K(µ,ν) can be represented as

κx(B) =

∫

R

∫

[0,1]

κxµ′(x)(µ
′(x), du)κ̂(µ

′(x),u)(dz′, du′)κ̃
(z′,u′)
z
′ (B), x ∈ X, B ⊆ Y, (19)

for some κ̂ ∈ Mb,1. Conversely, given any κ̂ ∈ Mb,1, the equation (19) defines a simultaneous
transport kernel κ ∈ K(µ,ν) from µ to ν.

Remark 5. Write f : R → P(Y ), (z′, u′) 7→ κ̃
(z′,u′)
z
′ . Then (19) can be written as, for x ∈ X ,

κx = E[f(ζ, ξ)] = E

[
κ̃
(ζ,ξ)
ζ

]

where (ζ, ξ)
law∼
∫ 1

0 κ̂
(µ′(x),u)κx

z
(du).

Let us first explain the intuition. The uniform measure τ on [0, 1] can be regarded as a para-
meterization space to keep the information of the space (Az, µz) when we map it to a single point
on R

d
+.6 It can be replaced by any atomless measure. The Monge property of κz, κ̃z′ will allow us

to reconstruct the original simultaneous transport because it guarantees that no information is lost
at the step where we encode (Az, µz) using a single point.7 Theorem 3 says that the way we para-
meterize this information does not matter—it is possible to fix two collections of parameterizations
a priori, as long as they have the Monge properties and are measurable. See also Figure 4 for a
pictorial representation.

We also need a few technical considerations. To see that Theorem 3 actually makes sense, we
need the following.

(i) Existence of a measurable selection of {κz}z∈Rd
+

and {κ̃z′}z′∈Rd
+

satisfying the Monge properties.

When X,Y are Euclidean spaces, this is guaranteed by a measurable selection of optimal plans

6When µ
′ (resp. ν′) is injective, we may remove the parameterization space on the mµ (resp. mν) side.

7To see the Monge property is crucial, imagine we use independent couplings for both—it will not yield the set of
all simultaneous transports.
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X Y

(R,mµ × τ) (R,mν × τ)

κ

x 7→(µ′(x),κx
µ′(x)

) (z′,u′) 7→S
z
′ (u′)

κ̂

(z,u) 7→Tz(u) y 7→(ν′(y),κ̃y

ν′(y)
)

Figure 4: MOT-SOT parity illustrated with commutative diagram: the double arrows connects the
upper half (simultaneous transport) and lower half (martingale transport). Note that the downward
arrows are not given by a map in general, which explains why Monge transport may not always
exist.

(Villani (2009, Corollary 5.22)) for the quadratic cost, which are given by deterministic maps;
see Gangbo and McCann (1996).8 A sufficient condition for Polish spaces is given by Villani
(2009, Theorem 5.30).

(ii) Joint measurability of κ̃
(z′,u′)
z
′ (B) in (z′, u′) (so that the integral in (19) makes sense). To see

this, denote the transport plan corresponding to κ̃z′ by π̃z′ , which is a probability measure on
{z′} × [0, 1] × Bz

′ . Define π̃ =
∫
π̃z′mν(dz′), which is a probability measure on R× Y and is

well-defined by (i). Next, disintegrate π̃ in the first two coordinates, (z′, u′) to get a family of
measures {κ̃z′,u′(·)} that is jointly measurable in (z′, u′). By uniqueness of disintegration and

since Bz
′ , z′ ∈ R

d
+ are disjoint, we must have κ̃z′,u′(·) = κ̃

(z′,u′)
z
′ (·).

Example 7. LetX = Y = {0, 1} and µ({0}) = (1/3, 2/3),µ({1}) = (2/3, 1/3), ν({0}) = (1/3, 1/3),
and ν({1}) = (2/3, 2/3). We have mµ = (δ(4/3,2/3) + δ(2/3,4/3))/2 and mν = δ(1,1). The backward
martingale transport from mµ to mν is unique. Therefore by Theorem 3, the simultaneous transport
from µ to ν is unique, and we can easily check that it is given by κ(0, {0}) = κ(1, {0}) = 1/3 and
κ(0, {1}) = κ(1, {1}) = 2/3.

An first immediate consequence is the following commutative relation. This can be seen as a
special case of a more general commutative relation illustrated by Figure 4 below.

Corollary 3. Let µ ∈ P(X)d and ν ∈ P(Y )d satisfy that K(µ,ν) is non-empty. Suppose that µ
is jointly atomless and mµ is atomless. Then there exists a backward martingale coupling between
mµ and mν that is also Monge.9 Moreover, if we denote by h the map that induces this Monge
transport, then there exists a simultaneous transport map f ∈ T (µ,ν) satisfying

ν ′(f(x)) = h(µ′(x)), x ∈ X.

Finally, we mention a more general version of Theorem 3 for the unbalanced setting. Apart from
the constraints κ ∈ K(µ,ν) we add an extra constraint that κ ∈ K(µ̄, ν̄) (which is automatically
satisfied in the balanced case; see (A.15)), i.e., define

K̃(µ,ν) = {κ ∈ K(µ,ν) | κ ∈ K(µ̄, ν̄)}.

There exists a parity relation between K̃(µ,ν) and the set of stochastic kernels from (R,mµ× τ) to
(R,mν × τ) that is backward submartingale in the first marginal. The proof is very similar to the
proof of Theorem 3 and we omit the details.

5.2 Optimality of simultaneous transport and examples

In this section, for simplicity we will keep the reference measure η = µ̄. The general case η ≪ µ̄
follows by modifying the cost function c(x, y).

8More precisely, we replace τ by [0, 1]ℓ, where ℓ is the larger dimension of X and Y . As commented above, this
will not affect the result.

9A coupling (X, Y ) is backward martingale if E[X|Y ] = Y , that is, (Y,X) forms a martingale.
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Suppose that we are given κz ∈ Kz, κ̃z′ ∈ K̃z
′ , z, z′ ∈ R

d
+ measurable as in the setup of Theorem

3. For κ ∈ K(µ,ν) with representation (19), let us compute the cost of the associated simultaneous
transport:

C(κ) =

∫

X×Y

c(x, y)κx(dy)µ̄(dx)

=

∫

Rd
+

∫

Az

∫

Y

c(x, y)κx(dy)µz(dx)mµ(dz)

=

∫

Rd
+

∫

Az

∫

Y

c(x, y)

∫

R

∫

[0,1]

κx
z
({z} × du)κ̂(z,u)(dz′, du′)κ̃

(z′,u′)
z
′ (dy ∩Bz

′)µz(dx)mµ(dz)

=

∫

R

∫

R

κ̂(z,u)(dz′, du′)

(∫

Az

∫

Y

c(x, y)κx
z
({z} × du)κ̃

(z′,u′)
z
′ (dy ∩Bz

′)µz(dx)

)
mµ(dz)

=

∫

R

∫

R

κ̂(z,u)(dz′, du′)

(∫

Az

∫

B
z
′

c(x, y)κx
z
({z} × du)κ̃

(z′,u′)
z
′ (dy)µz(dx)

)
mµ(dz), (20)

where the third equality follows since for x ∈ Az, µ
′(x) = z. Here, the infimum cost inf C(κ) is

taken over all κ̂ while fixing κz ∈ Kz, κ̃z′ ∈ K̃z
′ , z, z′ ∈ R

d
+. The infimum cost may also be taken

over all κz, κ̃z′ , κ̂, which leads to the same result.
Note that the measure

γz,z′,u′(V ) :=

∫

Az

∫

B
z
′

c(x, y)κx
z
({z} × V )κ̃

(z′,u′)
z
′ (dy)µz(dx)

satisfies γz,z′,u′ ≪ τ for all z, z′ ∈ R
d
+ and u′ ∈ [0, 1]. By Theorem 58 in Dellacherie and Meyer

(2011), there exists a jointly measurable function ĉ : R2 → R such that

∫

Az

∫

B
z
′

c(x, y)κx
z
({z} × du)κ̃

(z′,u′)
z
′ (dy)µz(dx) = ĉ(z, u, z′, u′)τ(du).

We are then left with

inf
κ∈K(µ,ν)

C(κ) = inf
κ̂∈Mb,1

∫

R

∫

R

κ̂(z,u)(dz′, du′)ĉ(z, u, z′, u′)mµ × τ(dz, du)

= inf E [ĉ(Z,U ;Z ′, U ′)]

where the last infimum is taken over all possible couplings (Z,U ;Z ′, U ′)
law∼ (mµ × τ) ⊗ κ̂ where

E[Z|(Z ′, U ′)] = Z ′. This becomes an optimal transport problem on “backward martingale over the
first marginal” in R

d+1. In fact, we may reduce the dimension to (d − 1) + 1, simply because the
Radon-Nikodym derivatives sum up to a constant. The connection to MOT also explains some
bizarre behaviors of SOT. For example, in Example 5, the transport cost is a constant if µ is linear
and the cost function is quadratic. This stems from the well-known fact that the quadratic cost is
trivial for MOT. We next discuss a few special classes and explicitly solvable examples below.

Example 8. When µ′ is injective and Y = R, we may pick κz to map the point (µ′)−1(z) to τ and
κ̃z′ the comonotone coupling between νz′ and τ . We arrive at

ĉ(z, u, z′, u′) =

∫

B
z
′

c((µ′)−1(z), y)κ̃u
′

z
′ (dy) = c((µ′)−1(z), F←

z
′ (u′)),

where F←
z
′ is the left-continuous inverse of the measure νz′ .
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Example 9. Assume that c(x, y) depends only on µ′(x) and ν ′(y) (for instance, when both µ′ and
ν ′ are injective), then with ĉ(µ′(x),ν ′(y)) = c(x, y), we have for any V ⊆ [0, 1],

∫

Az

∫

B
z
′

c(x, y)κx
z
({z} × V )κ̃

(z′,u′)
z
′ (dy)µz(dx)

= ĉ(z, z′)

∫

Az

∫

B
z
′

κx
z
({z} × V )κ̃

(z′,u′)
z
′ (dy)µz(dx) = ĉ(z, z′)τ(V ).

This yields

inf
κ∈K(µ,ν)

C(κ) = inf
κ̂∈M(mν ,mµ)

∫

Rd
+

∫

Rd
+

κ̂z
′

(dz)ĉ(z, z′)mν(dz′). (21)

Intuitively, in the optimal transport problem, we may remove the extra dimension where τ is sup-
ported, because the cost function depends only on the R

d
+-coordinate. In particular, (21) is now

equivalent to an MOT problem.
In this setting, it is possible to recover an optimal simultaneous transport from an optimal

martingale coupling π: let κ̂(z,u) follow π in the first coordinate and identity in the second, then the
kernel κ defined in (19) gives an optimal simultaneous transport.

An immediate consequence of Example 9 is that MOT on compact Euclidean spaces can be
realized as a special case of SOT. This is called the MOT-SOT parity as suggested by the title of
this section.

Example 10. We may strengthen Theorem 3 when both µ′(x) and ν ′(y) are injective, as follows. It
can be checked that the same result goes through if we remove our parameterization space ([0, 1], τ).
In other words, there is a correspondence between simultaneous transport and backward martingale
transport (on R

d). Using Theorem 2.1 of Nutz et al. (2022), we thus obtain a stronger version of
Proposition 1, that a Monge simultaneous transport exists when mµ is atomless.10 If moreover c,
(µ′)−1, and (ν ′)−1 are continuous and c is bounded, we conclude using Corollary 2.4 of Nutz et al.
(2022) the equivalence between Monge and Kantorovich costs, complementing Theorem 1.

Remark 6. Recall that the supremum in the MOT duality formula may not always be attained.
Indeed, a simple counterexample is given by Beiglböck et al. (2017), Example 8.2. By the MOT-
SOT parity, the supremum in our SOT duality formula (18) is not always attained either. For
details, see the dual MOT-SOT parity discussions in Section A.5.

Example 11. Consider µ′ taking values on only two points, say z1 and z2 (so that ν ′ takes values
only on the line segment joining these two points). In this case there is a further decomposition of
the transport κ̂ ∈ Mb,1, into a collection of independent transports from ([0, 1], τ) to ([0, 1], τ). This
is because any such κ̂ must transport a positive fraction of the measure on z′ × [0, 1] to z1 × [0, 1]
and the rest to z2 × [0, 1]. Further solutions are available if ĉ is nicely behaved (however, this might
be difficult to achieve in general). In the special case where µ′ is also injective, every simultaneous
transport has the same cost.

Example 12. Let d = 2 and consider measures µ,ν on R such that dµ1/dµ̄(x) and dν1/dν̄(y)
are affine in x, y respectively with positive slopes (the cases with negative slopes are analogous).
Assume that c(x, y) = h(x − y) for some differentiable h with h′ strictly convex, and such that
|c(x, y)| 6 a(x) + b(y) for some a ∈ L1(mµ), b ∈ L1(mν). This SOT problem is then reduced to a
MOT problem on R, in the form of (21), with a martingale Spence-Mirrlees cost function. Using
Theorem 1.7 in Beiglböck and Juillet (2016), the MOT problem (21) is uniquely solved by the left-
curtain transport from mν to mµ This coupling uniquely induces a simultaneous transport from µ

to ν since µ′,ν ′ are injective. This easily generalizes to when f1 := dµ1/dµ̄ and g1 := dν1/dν̄ not
being linear. For example, assuming f ′′1 , f

′
1, g
′
1, cxxy all being positive suffices.

10This is also true if we only assume ν
′ is injective, by removing the parameterization space on the mν side.
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5.3 Decomposition of two-way transport

Define an equivalence relation ≃ among R
d-valued probability measures as follows: µ ≃ ν if

mµ = mν (or equivalently, both Π(µ,ν) and Π(ν,µ) are non-empty). For P ∈ P(Rd), we define

EP = {µ ∈ Π(X)d | mµ = P},

the equivalence class under ≃. The transitivity of ≃ follows from Corollary 1. We also define the
minimum transport cost between µ and ν as

Ic(µ,ν) := inf
π∈Π(µ,ν)

∫

X×Y

c(x, y)π(dx, dy) = inf
κ∈K(µ,ν)

C(κ).

Theorem 4 (Decomposition of two-way transport). Suppose that c is continuous. For µ,ν ∈ EP
and κ ∈ K(µ,ν), we have κ ∈ K(µz, νz) for P -a.e. z. Moreover, the following are equivalent:

(i) κ is an optimal transport from µ to ν;

(ii) κ is an optimal transport from µz to νz for P -a.s. z;

(iii) we have

C(κ) =

∫

Rd
+

Ic(µz, νz)P (dz). (22)

In particular,

Ic(µ,ν) =

∫

Rd
+

Ic(µz, νz)P (dz).

Remark 7. That the right-hand side of (22) is indeed well-defined will be discussed in the proof
using a measure selection argument.

Remark 8. If µ,ν ∈ EP and µ′ is injective, the proof of Theorem 4 also indicates that K(µ,ν)
consists of a single element, i.e., the simultaneous transport from µ to ν is unique.

A few comments are in place. Roughly speaking, two-way transports exist if and only if each
transport from µ to ν (provided it exists) can be inverted to produce a transport from ν to µ.
This inversion is not in general possible, because multiple points with different Radon-Nikodym
derivatives may be transported to the same point in the destination, while any inversion transports
back with the same Radon-Nikodym derivative as the destination point; see Figure 1 (a).

If both X,Y are discrete, the two-way transports exist if and only if for each z ∈ R
d
+,

∑

x∈X: µ′(x)=z

µ̄({x}) =
∑

y∈Y : ν′(y)=z

ν̄({y}). (23)

Theorem 4 provides us with an explicit expression of the minimum cost Ic(µ,ν). Intuitively,
it amounts to optimizing a (possibly infinite) collection of individual classic transport problems
with the same cost function. For the important case of a convex cost, i.e., c(x, y) = h(y − x)
with h strictly convex, existing techniques can be applied to solve these individual problems; see
Gangbo and McCann (1996). In the special case where X = Y = R and c is continuous and strictly
submodular11 on R

2, this transport problem is uniquely optimized by taking comonotone transport
plans from µz to νz for each z ∈ R

d
+ by the Fréchet-Hoeffding theorem. We summarize this in the

following corollary.

11A function c on X × Y is submodular if c(x, y) + c(x′, y′) 6 c(x, y′) + c(x′, y) whenever x 6 x′ and y 6 y′. It is
strictly submodular if the above inequality is strict as soon as (x, y) 6= (x′, y′). An example of a (strictly) submodular
function on R

2 is (x, y) 7→ h(y − x) for a (strictly) convex h.
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Corollary 4. Suppose that X = Y = R, µ,ν ∈ EP and c is continuous and submodular. Then

Ic(µ,ν) =

∫

Rd
+

∫ 1

0

c
(
F−1
z

(t), G−1
z

(t)
)

dt P (dz),

where F−1
z
, G−1

z
are the distribution functions of µz, νz respectively.

In Appendix A.4, we further discuss an application of Corollary 4 to Wasserstein distances
between R

d-valued probability measures. Each of the distances will be defined on some equivalence
class EP .

As another consequence of Theorem 4, we obtain the following slightly stronger duality result.
This duality formula appears in a different form compared to the one in Theorem 2, and it is similar
to the duality formula in the classic setting (d = 1). This is due to Theorem 4, which is only possible
in case of two-way transport problems. Recall that in case d = 1, all transport problems are two-way.

Proposition 6. Suppose that both Π(µ,ν) and Π(ν,µ) are non-empty and c : X × Y → [0,∞) is
uniformly continuous and bounded, then duality holds as

inf
π∈Π(µ,ν)

∫

X×Y

c dπ = sup
(φ,ψ)∈Φ̃c

∫

X

φdµ̄+

∫

Y

ψ dν̄, (24)

where

Φ̃c =

{
(φ, ψ) ∈ L1(µ̄) × L1(ν̄) | φ(x) + ψ(y) 6 c(x, y) if µ′(x) = ν ′(y)

}
.

Moreover, both the infimum and supremum in (24) are attained.

Using the Decomposition Theorem, we discuss a few interesting examples illustrating the pecu-
liarities of simultaneous transport (complementing Section 3.3) on an equivalence class EP . From
classic optimal transport theory (d = 1), we first recall the following result.

Proposition 7 (Theorem 1.17 in Santambrogio (2015)). Suppose that probability measures µ, ν are
supported on a compact domain Ω ⊆ R

N where ∂Ω is µ-negligible, µ is absolutely continuous, and
c(x, y) = h(y − x) with h strictly convex, then there exists a unique transport that is optimal among
all Kantorovich transports and such a transport is Monge.

Example 13 below shows that, in the setting of simultaneous transport (d = 2), there may not
exist an optimal Monge transport even if we assume moreover that both µ and ν are absolutely
continuous with respect to the Lebesgue measure on [0, 1]2 and are jointly atomless.

We first recall from Exercise 2.14 in Villani (2003) that if we remove the absolute continuity
condition of µ while still assuming µ is atomless, Proposition 7 may fail to hold. A counterexample
is given by µ being uniform on [0, 1]×{0}, and µ uniformly distributed on [0, 1]×{a, b} where a 6= b,
with N = 2 and c(x,y) = ‖x− y‖2.

Example 13. Consider N = 2 and c(x,y) = ‖x− y‖2. Define µ1, ν1 being uniformly distrib-
uted on [0, 1] × [0, 1] and [0, 1] × [2, 3] respectively. Define µ2 supported on [0, 1] × [0, 1] such that
dµ2/dµ1(x, y) = 2y and ν2 supported on [0, 1] × [2, 3] such that dν2/dν1(x, y) = 2 − 4|y − 5/2|.

Observe that µ̄, ν̄ are compactly supported and µ,ν are jointly atomless (e.g., the uniform
distribution on [0, 1] × {0} and µ′1 are independent). For each z ∈ R+, using notations similarly as
in Section 5, we have Az := (µ′1)−1(z) = [0, 1]×{(1− z)/2z} and Bz := (ν′1)−1(z) = [0, 1]×{(5/2)±
((3z − 1)/2z)}. Moreover, µz , νz are uniformly distributed on Az, Bz respectively. Thus, from the
counterexample mentioned above, the unique optimal transport from µz to νz is not Monge unless
z = 1/3. This proves that the unique optimal transport from µ to ν is not Monge.
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We next discuss an example of simultaneous transport between Gaussian measures. For simplicity
we focus on the case d = 2 with L2 cost. First, we record a general result stating that for µ,ν in
the same equivalence class EP , there must exist a linear transport between them. That is, µ and ν
differ by a nonsingular linear transformation.

Proposition 8. If µ,ν are R
2-valued Gaussian measures on R

N with positive densities everywhere,
then µ,ν belong to the same equivalence class EP if and only if µ ◦ T−1 = ν where T (x) = Ax + b

with A invertible.

Example 14. We discuss an example where the optimal transport may not be the linear transport
given in Proposition 8. Consider δ > 0 and Gaussian measures µ1, ν1 ∼ N(0, I2), µ2 ∼ N(0,Σ), and
ν2 ∼ N(0,Ω) where

Σ =

(
1 + δ 0

0 1

)
and Ω =

(
1 0
0 1 + δ

)
.

It is straightforward to compute all the linear transports in K(µ,ν). These are given by reflections
along y = ±x axes and rotations of ±π/2 degrees at zero. Our goal is to show that these transports
are not optimal, in contrast to the case d = 1 where optimal transports are linear. Observe that
µ,ν belong to the same equivalence class EP (since two-way transports exist), so that we may apply
Theorem 4. Consider z ∈ (0, 2), then computing the density yields that dµ1/dµ̄((x, y)) = z if and
only if

x = ±
√

2(1 + δ)3/2

δ
log

(
2

z
− 1

)
=: ±hδ(z).

Similarly, dν1/dν̄((x, y)) = z if and only if y = ±hδ(z). The optimal transport problem from µ to ν
is then reduced to transporting from {(x, y) | x = ±c} to {(x, y) | y = ±c} for each c = hδ(z) > 0 on
which some copies of Gaussian measures are equipped. Direct computation shows that a transport
from µz to νz is given by

T ((x, y)) = (sgn(x)|y|, sgn(y)|x|).
This is illustrated by the following Figure 5.

hδ(z)

−hδ(z)

Figure 5: Optimal transport from µz to νz : the red and blue lines indicate the supports of µz and
νz respectively. Black arrows indicate the transports.

Recall from Theorem 3.2.9 of Rachev and Rüschendorf (1998) that T is optimal if and only if

(sgn(x)|y|, sgn(y)|x|) ∈ ∂f(x, y)
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for some lower semi-continuous convex function f on R
2, where the subdifferential ∂f is given by

∂f(x) := {x∗ ∈ X∗ | f(x) − f(y) > 〈x− y,x∗〉 for all y ∈ X}, x ∈ X = R
2.

It is straightforward to check that f(x, y) = |y| meets these criteria, so that T is indeed an optimal
transport from µz to νz. Since this holds for all z ∈ (0, 2), by Theorem 4, the transport T on R

2 is
an optimal transport from µ to ν. Evidently, this is not given by a linear map. Intuitively, even if
there always exists an optimal linear transport map when considering transports of a single measure,
in our case the measures are weaved in such a way that under both constraints, none of the linear
maps become optimal.

6 Concluding remarks

The simultaneous optimal transport is introduced and studied in this paper. In view of the wide
applications of optimal transport in economic studies, such as contract design (Ekeland (2013)),
Cournot-Nash equilibria in non-atomic games (Blanchet and Carlier (2016)), multiple-good mono-
poly (Daskalakis et al. (2017)), implementation problems (Nöldeke and Samuelson (2018)), and team
matching (Boerma et al. (2021), there are many directions of SOT for future exploration, in addition
to our motivating examples and equilibrium analysis in Section 2 and Appendix C. More broadly,
optimal transport also has strong presence in robust risk assessment (Embrechts et al. (2013)), op-
tion pricing (Beiglböck et al. (2013)), machine learning (e.g., Peyré and Cuturi (2019)), operations
research (e.g., Blanchet and Murthy (2019)) and statistics (e.g., Carlier et al. (2016)), which offer
natural locations to look for applications of our new framework.

The framework is shown to be technically much more complicated than the classic setting which
corresponds to d = 1 and many new mathematical results are obtained. Due to the additional
technical richness, there are many directions to explore within the framework of SOT. We discuss a
few directions below.

(i) The MOT-SOT parity (Theorem 3) could potentially pave the path to many future develop-
ments of SOT. For example, some results on MOT such as complete duality may be translatable
to SOT, shedding lights on some of our open questions below. Computational methods for SOT
may be developed based on those of MOT; see De March (2018) and Guo and Ob lój (2019).
Exploration along these directions is left for future study.

(ii) We have focused on the case where d is an integer. The problem can be naturally formulated
for infinite dimension, by looking at K(µ,ν) :=

⋂
j∈J K(µj , νj) where J is an infinite set which

is possibly a continuum. The optimal transport problem in this setting can be seen as a limit in
some sense of our setting as d→ ∞. A significant technical challenge arises because {µj | j ∈ J}
may not admit a dominating measure. For studies involving collections of probabilities without
a dominating measure, see e.g., Soner et al. (2011) in the context of stochastic analysis with
applications to mathematical finance.

(iii) The setting of this paper involves two tuples of measures to transport between. A natural
question is how to generalize the framework to accommodate multiple marginals µ1, . . . ,µn ∈
P(X)d. For simplicity, assume all marginals are probabilities and defined on the same space
X . In case d = 1, such a generalization can be conveniently described via the Kantorovich
formulation such that the optimal transport problem is

inf
π∈Π(µ1,...,µn)

∫

Xn

c dπ,

where c : Xn → R is the cost function and Π(µ1, . . . , µn) is the collection of measures with
marginals µ1, . . . , µn ∈ P(X); see e.g., Rüschendorf (2013) and Pass (2015) for results in
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multi-marginal transports for d = 1. In contrast to the case d = 1 or n = 2, such a general-
ization cannot be easily described via the Kantorovich formulation for d > 2 and n > 3. A
possible formulation via kernels is given by defining, for each j ∈ [d], K(µ1

j , . . . , µ
n
j ) = {κ :

X → P(Xn−1) | κ#µ1
j ∈ Π(µ2

j , . . . , µ
n
j )} and letting K(µ1, . . . ,µn) =

⋂d
j=1 K(µ1

j , . . . , µ
n
j ).

Each κ ∈ K(µ1, . . . ,µn) corresponds to a multi-marginal simultaneous transport, with n = 2
corresponding our setting and d = 1 corresponding to the classic multi-marginal transport
setting.

(iv) Recall that in the Monge formulation, the objective is to minimize

Cη(T ) =

∫

X

c(x, T (x))η(dx). (25)

One may consider a nonlinear reference, i.e., η in (25) is a Choquet capacity12 instead of a
measure. The motivation of this formulation can be easily explained in the context of Example
3, where the objective is

to minimize

∫
f(L)dη, subject to L ∈ T (µ,ν). (26)

By taking η as a capacity, (26) includes many popular objectives in risk management and
decision analysis. For instance, if η is given by η : A 7→ 1{P(A)>1−α} where P ∈ P(X),
then

∫
f(L)dη is the (left) α-quantile of f(L), and the problem (26) is a quantile optimiz-

ation problem; see e.g., Rostek (2010) for an axiomatization of quantile optimization in de-
cision theory. This formulation also includes optimization of risk measures (Föllmer and Schied
(2016)) or rank-dependent utilities (Quiggin (1993)) of the financial position f(L). More gen-
erally, one may optimize R(L) subject to L ∈ T (µ,ν) for a general mapping R : L → R,
such as many other quantities developed in decision theory (e.g., Hansen and Sargent (2001);
Maccheroni et al. (2006)). Alternatively, instead of choosing η as a capacity, µ and ν may also
be chosen as tuples of capacities instead of measures.

(v) Our optimal transport is allowed to be chosen from the entire set of transports K(µ,ν) (kernel)
or T (µ,ν) (Monge). There is an active stream of research on optimal transport with constraints
such as MOT and directional optimal transport (e.g., Nutz and Wang (2022)). Adding these
constraints to the simultaneous transport gives rise to many new challenges and requires further
studies.

(vi) There are a few technical open questions related to results in this paper.

(a) We have explained in Remark 6 that the supremum may not always be attained in the
duality formula (18). Establishing a complete duality remains a challenging problem, where
we refer to Beiglböck et al. (2017), Nutz and Stebegg (2018), and De March and Touzi
(2019) for relevant results for MOT.

(b) There are several places in the paper where compactness of X and Y is assumed. For
instance, compactness is used in Theorem 1 and Proposition 5. We expect that this
condition can be removed. In particular, we note that Theorem 1 for d = 1 holds without
the compactness assumption as shown by Pratelli (2007).

12A Choquet capacity η on a σ-field B of X is a function η : B → [0,∞] such that η(∅) = 0 and η(A) 6 η(B) for

A ⊆ B ⊆ X, and the integration of L : X → R with respect to η is defined as
∫
Ldη =

∫
∞

0
η(L > t)dt +

∫
0

−∞
(η(L >

t) − η(X))dt.
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Appendices

In the appendices, we first present proofs and some additional results in Appendix A. We then
collect a small review of literature on various generalizations of optimal transport in Appendix B.
Finally, we discuss an application of SOT duality to a labour market equilibrium model in Appendix
C.

A Proofs and additional results

A.1 Proofs of results in Section 3

Proof of Proposition 1. The first statement is implied by Proposition 9.7.1 of Torgersen (1991) and
the remarks that follow it. The second statement can be shown by the same arguments as in Theorem
3.17 of Shen et al. (2019) where µ(X) = ν(Y ) is assumed.

Proof of Proposition 2. Note that it suffices to prove the case T = 3, as the necessity statement
for T > 3 follows from that for T = 3. Write α = σ2

2/σ
2
1 > 0 and β = σ2

3/σ
2
2 > 0. Increasing

log-concavity of t 7→ σt means α > β > 1 (case i) and decreasing log-convexity of t 7→ σt means
α 6 β 6 1 (case ii).

Using Lemma 3.5 of Shen et al. (2019), the following are equivalent:

(a) K((µ1, µ2), (µ2, µ3)) 6= ∅;

(b) dµ2

dµ3

∣∣
µ3

�cx
dµ1

dµ2

∣∣
µ2

;

(c) dµ3

dµ2

∣∣
µ2

�cx
dµ2

dµ1

∣∣
µ1
,

where �cx is the one-dimensional convex order on P . We shall use the equivalent condition (b) for
the case α, β > 1 and the condition (c) for the case α, β 6 1. Writing ξ as a standard Gaussian

random variable, and
law
= as equality in distribution, by direct calculation,

dµ1

dµ2

∣∣∣
µ2

law
=

σ2
σ1
e
− Z2

2σ2
1

+ Z2

2σ2
2

∣∣∣
Z∼µ2

law
=

√
αeξ

2( 1
2−

α
2 ),

dµ2

dµ3

∣∣∣
µ3

law
=

σ3
σ2
e
− Z2

2σ2
2
+ Z2

2σ2
3

∣∣∣
Z∼µ3

law
=
√
βeξ

2( 1
2−

β
2 ),

dµ2

dµ1

∣∣∣
µ1

law
=

σ1
σ2
e
− Z2

2σ2
2
+ Z2

2σ2
1

∣∣∣
Z∼µ1

law
=

√
1

α
eξ

2( 1
2−

1
2α ),

and

dµ3

dµ2

∣∣∣
µ2

law
=

σ2
σ3
e
− Z2

2σ2
3
+ Z2

2σ2
2

∣∣∣
Z∼µ2

law
=

√
1

β
eξ

2( 1
2−

1
2β ).
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Therefore, K((µ1, µ2), (µ2, µ3)) 6= ∅ is equivalent to

β1/2eξ
2( 1

2−
β
2 ) �cx α

1/2eξ
2( 1

2−
α
2 ) ⇐⇒ β−1/2eξ

2( 1
2−

1
2β ) �cx α

−1/2eξ
2( 1

2−
1
2α ). (A.1)

A convenient result we use here is Corollary 1.2 of Hirsch et al. (2011), which says that the stochastic

process ((1 + 2t)1/2e−ξ
2t)t>0 is a peacock; moreover, it is obvious that this process is non-stationary.

This implies that, for x, y > 1,
√
yeξ

2( 1
2−

y
2 ) �cx

√
xeξ

2( 1
2−

x
2 ) if and only if y 6 x. Hence, if α, β > 1,

then (A.1) is equivalent to β 6 α, thus case (i), and if α, β 6 1, then (A.1) is equivalent to β > α,
thus case (ii).

To show that (i) and (ii) are the only cases where a transport from (µ1, µ2) to (µ2, µ3) exists,

it suffices to exclude the case α < 1 < β or β < 1 < α. Note that in this case
√
βeξ

2( 1
2−

β
2 ) and√

αeξ
2( 1

2−
α
2 ) have mismatch supports (one bounded away from −∞ and one bounded away from

∞), and the hence either order in (A.1) is not possible.

The condition in Proposition 2 is not sufficient when T > 3. For example, consider (σt) =
(8, 4, 2,

√
2, 1). If κ ∈ K((µ1, . . . , µd−1), (µ2, . . . , µd)), then by Theorem 4 in Appendix A.3,

κ(x; {±x/2}) = κ(x; {±x/
√

2}) = 1, a contradiction.

Proof of Proposition 3. By symmetry, it suffices to consider the case d = 2 and we assume that
i = 1, j = 2.

Consider the decomposition Y = Y1 ∪ Y2 where Y1 = {y ∈ Y | ν′1(y) > 1} = Y c2 . Also fix an
arbitrary κ ∈ K(µ,ν). Then for B ⊆ Y1, we have

κ#(µ1 − µ2)+(B) =

∫

X

κ(x;B)(µ1 − µ2)+(dx)

>

∫

X

κ(x;B)(µ1 − µ2)(dx) = (ν1 − ν2)(B) = (ν1 − ν2)+(B).

In fact, this holds with κ replaced by κ|X1 , where we define X1 = {x ∈ X | µ′1(x) > 1} = Xc
2 .

Similarly, for B ⊆ Y2, we have

(κ|X2)#(µ2 − µ1)+(B) > (ν2 − ν1)+(B).

Therefore, denoting by η1 the restriction of η on the set {x ∈ X | µ′1(x) > 1} and η2 = η − η1, we
obtain

Cη(κ) =

∫

X×Y

c(x, y)κx(dy)η(dx)

=

∫

X1×Y

c(x, y)κ|X1 (x; dy)η1(dx) +

∫

X2×Y

c(x, y)κ|X2(x; dy)η2(dx)

> inf
κ∈K((µ1−µ2)+,(ν1−ν2)+

Cη1(κ) + inf
κ∈K((µ2−µ1)+,(ν2−ν1)+

Cη2(κ)

= inf
κ∈K((µ1−µ2)+,(ν1−ν2)+)

Cη(κ) + inf
κ∈K((µ2−µ1)+,(ν2−ν1)+)

Cη(κ),

where in the last step we used the condition that for any x ∈ X , there exists y ∈ Y such that
c(x, y) = 0. Taking infimum over κ ∈ K(µ,ν) proves (10).

A.2 Proofs of results in Section 4

Proof of Proposition 4. For each stochastic kernel κ ∈ K(µ,ν), we can define a measure π ∈ P(X×
Y ) such that

π(A×B) =

∫

A

κ(x;B)η(dx) for all A ⊆ X, B ⊆ Y. (A.2)
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Such a measure π exists and is unique by Carathéodory’s extension theorem. It follows that for a
nonnegative measurable function f : X → R,

∫

X×B

f(x)π(dx, dy) =

∫

X

κ(x;B)f(x)η(dx),

which can be proved by considering indicator functions first and then using monotone convergence.
Plugging in f := dµj/dη we obtain for any B ⊆ Y,

νj(B) 6

∫

X

κ(x;B)µj(dx) =

∫

X

κ(x;B)
dµj
dη

(x)η(dx) =

∫

X×B

dµj
dη

(x)π(dx, dy).

In addition, for any A ⊆ X , π(A × Y ) =
∫
A κ(x;Y )η(dx) = η(A), so by definition, π ∈ Πη(µ,ν).

On the other hand, given π ∈ Πη(µ,ν), we have by definition π ◦ π−11 = η where π1 is projection
onto X . By the disintegration theorem for product spaces, there exists a stochastic kernel κ : R →
P(Y ) such that for A ⊆ X, B ⊆ Y,

π(A×B) =

∫

A

κ(x;B)π ◦ π−11 (dx) =

∫

A

κ(x;B)η(dx),

which is exactly (A.2). Similarly as above, we have

νj(B) 6

∫

X×B

dµj
dη

(x)π(dx, dy) =

∫

X

κ(x;B)
dµj
dη

(x)η(dx) =

∫

X

κ(x;B)µj(dx),

thus κ ∈ K(µ,ν).

Next, we turn to the proof of Theorem 1. We first show a useful lemma, Lemma A.2 below,
which will be used to show that joint non-atomicity is sufficient for the equality between the optimal
values of Monge and Kantorovich formulations of simultaneous transport in Section 4.

In what follows, B is always the Borel σ-field on R. We first define another notion of joint
non-atomicity introduced by Delbaen (2021). This notion is similar to our Definition 1, which
was proposed by Shen et al. (2019), but this time defined for σ-fields. Both Shen et al. (2019)
and Delbaen (2021) called their properties as being “conditionally atomless” (and they are indeed
equivalent in some sense as discussed by Delbaen (2021); see Lemma A.1). Recall that we renamed
the notion from Shen et al. (2019) as joint non-atomicity. All inequalities below involving conditional
expectations are in the almost sure sense.

Definition A.1. Let (Ω,G, µ) be a measure space. We say that (G, µ) is atomless conditionally to
the sub-σ-field F ⊆ G, if for all A ∈ G with µ(A) > 0, there exists A′ ⊆ A, A′ ∈ G, such that

E
µ[1A|F ] > 0 =⇒ 0 < E

µ[1A′ |F ] < E
µ[1A|F ].

Intuitively, the requirement in Definition A.1 means that any set A can be divided into smaller
(measured by µ) sets, conditionally on F . Delbaen (2021) showed that the two notions of conditional
non-atomicity are equivalent in the sense of Lemma A.1. This equivalence is anticipated because,
in the unconditional setting, any set being divisible (corresponding to Definition A.1) is equivalent
to the existence of a continuously distributed random variable (corresponding to Definition 1); see
e.g., Lemma D.1 of Vovk and Wang (2021).

Lemma A.1. Let µ be any strictly positive convex combination of µ ∈ P(X)d. Then µ is jointly
atomless if and only if (B(X), µ) is atomless conditionally to σ(dµ/dµ).

Proof. This statement follows from Theorem 2.3 of Delbaen (2021). The connection between the
two notions of conditional non-atomicity is discussed in Remark 2.11 of Delbaen (2021).
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Next, we are ready to give a useful lemma for non-atomicity on a subset of the sample space.

Lemma A.2. Let µ = (µ1, . . . , µd) ∈ P(X)d be jointly atomless. Consider an arbitrary Borel set
B ⊆ R and, without loss of generality, assume µj(B) > 0 for 1 6 j 6 m where m 6 d. The
normalized tuple µB of probability measures on B, given by

µB =

(
µ1|B
µ1(B)

, . . . ,
µm|B
µm(B)

)
,

is again jointly atomless.

Proof. Let µ = (µ1 + · · · + µm)/m and F = σ(dµ/dµ) = σ(dµ1/dµ, . . . , dµm/dµ). Define FB =
{A ∩B | A ∈ F} and similarly for BB, and µB(A) = µ(A ∩B)/µ(B) for A ∈ B.

Take A ∈ BB with µ(A) = µ(B)µB(A) > 0. Note that (µ1, . . . , µm) is jointly atomless. Using
Lemma A.1, (B, µ) is atomless conditionally to F . By definition, there exists A′ ⊆ A, A′ ∈ B such
that

E
µ[1A|F ] > 0 =⇒ 0 < E

µ[1A′ |F ] < E
µ[1A|F ]. (A.3)

Since A′ ⊆ A ⊆ B, we have

E
µB [1A|FB] = E

µB [1A|F ] = E
µ[1A|F ],

and the same holds for A′ in place of A. As a consequence, (A.3) leads to

E
µB [1A|FB] > 0 =⇒ 0 < E

µB [1A′ |FB] < E
µB [1A′ |FB] (A.4)

Note also that A′ ∈ BB by definition. Therefore, by treating µB as a probability measure on BB,
(A.4) implies that (BB, µB) is atomless conditionally to FB. Noting that µB is a strictly positive
convex combination of components of µB, and using Lemma A.1 again, we conclude that µB is
jointly atomless.

Proof of Theorem 1. We can without loss of generality assume that X = Y by considering µ,ν as
measures on the compact space X × Y , and that each µj is a probability measure. We have shown
above that Monge transports are special cases as Kantorovich transports, thus the infimum cost
among Monge transports is bounded below by that among Kantorovich transports.

To prove the other direction, we first assume that there is δ > 0 such that dη
dµ̄ (x) > δ for all

x ∈ X . For each n ∈ N we partition X into countably many Borel sets {Ki,n}i∈N of diameter smaller
than 1/n and such that for each i,

supx∈Ki,n

dη
dµ̄ (x)

infx∈Ki,n

dη
dµ̄ (x)

6 1 +
1

n
.

Consider a transport plan κ ∈ K(µ,ν). Define

µi,n := µ|Ki,n
and for B ⊆ X, νi,n(B) :=

∫

Ki,n

κ(x;B)µ(dx). (A.5)

It is then obvious that κi,n := κ|Ki,n
∈ K(µi,n,νi,n). Consider the normalized probability measures

dµ̃i,nj =
dµi,nj

µi,nj (Ki,n)
; dν̃i,nj =

dνi,nj

νi,nj (X)
.

It is also easy to check that κi,n ∈ K(µ̃i,n, ν̃i,n). By Proposition 1, (µ̃i,n)′|µ̄i,n �cx (ν̃i,n)′|ν̄i,n .
By Lemma A.2, µ̃i,n is jointly atomless, so that applying Proposition 1 again, we conclude that
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T (µ̃i,n, ν̃i,n) is non-empty.13 That is, there exist Monge transports Ti,n : Ki,n → X such that
µi,n ◦ T−1i,n = νi,n. By gluing these, we obtain a Monge transport Tn : X → X . Note that
Tn ∈ T (µ,ν) since

∑

i∈N

νi,n(B) =

∫

X

κ(x;B)µ(dx) > ν̄(B).

Define κn(x;B) := 1{Tn(x)∈B}, then κn ∈ K(µ,ν). Our goal now is to show that

Cη(Tn) =

∫

X×X

c(x, y)η ⊗ κn(dx, dy) →
∫

X×X

c(x, y)η ⊗ κ(dx, dy). (A.6)

Let us define cost functions

c̄n(x, y) := sup
x0∈Ki,n,y0∈Kℓ,n

c(x0, y0) if x ∈ Ki,n and y ∈ Kℓ,n.

Then since c is uniform continuous on X ×X , we have

∫

X×X

|c̄n(x, y) − c(x, y)|η ⊗ κ(dx, dy) → 0. (A.7)

On the other hand,

∫

Ki,n×Kℓ,n

η ⊗ κn(dx, dy) =

∫

Ki,n

1{Tn(x)∈Kℓ,n}η(dx)

=

∫

Ki,n

1{Tn(x)∈Kℓ,n}

dη|Ki,n

dµ̄i,n
(x)µ̄i,n(dx)

6 sup
x∈Ki,n

dη

dµ̄
(x)ν̄i,n(Kℓ,n)

6

(
1 +

1

n

)
inf

x∈Ki,n

dη

dµ̄
(x)ν̄i,n(Kℓ,n)

6

(
1 +

1

n

)∫

Ki,n×Kℓ,n

η ⊗ κ(dx, dy).

Applying this in the second inequality below yields that

Cη(Tn) 6

∫

X×X

c̄n(x, y)η ⊗ κn(dx, dy)

=
∑

i∈N

∑

ℓ∈N

sup
x∈Ki,n,y∈Kℓ,n

c(x, y)

∫

Ki,n×Kℓ,n

η ⊗ κn(dx, dy)

6

(
1 +

1

n

)∑

i∈N

∑

ℓ∈N

sup
x∈Ki,n,y∈Kℓ,n

c(x, y)

∫

Ki,n×Kℓ,n

η ⊗ κ(dx, dy)

=

(
1 +

1

n

)∫

X×X

c̄n(x, y)η ⊗ κ(dx, dy). (A.8)

Combining (A.7) and (A.8), and since c > 0, we obtain

lim sup
n→∞

Cη(Tn) 6

∫

X×X

c(x, y)η ⊗ κ(dx, dy).

13We can forget about the components j where µ̃
i,n
j (Ki,n) = 0 because the transport condition is trivially satisfied

there.
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The liminf part is similar. We have thus proved (A.6).
In the general case where dη/dµ̄ is not bounded below by δ > 0, we consider ηδ := η+ δµ̄. Since

c is bounded, we have uniformly for T ∈ T (µ,ν) and κ ∈ K(µ,ν),

Cηδ(T ) → Cη(T ) and Cηδ (κ) → Cη(κ) as δ → 0.

This completes the proof.

Proof of Proposition 5. Denote by

Jn := inf
π∈Πη(µ,νn)

C(π).

It suffices to show for each subsequence {nk} there exists a further subsequence {nkℓ} such that
Jnkℓ

→ infπ∈Πη(µ,ν) C(π).
Consider for each n a measure πn ∈ Πη(µ,νn). Then since X,Y are compact, the sequence

(πnk
) is tight, so a subsequence (πnkℓ

) converges weakly to some π ∈ P(X × Y ). Since dµ/dη is
continuous, the operations defining Πη(µ,ν) is continuous with respect to weak topology in (13),
thus we have π ∈ Πη(µ,ν). Since c(x, y) is continuous, this gives that

lim
k→∞

C(πnk
) = C(π).

Taking infimum yields that
lim inf
ℓ→∞

Jnkℓ
> inf

π∈Πη(µ,ν)
C(π).

Since νn 6 ν, we also have
Jnkℓ

6 inf
π∈Πη(µ,ν)

C(π),

thus Jnkℓ
→ infπ∈Πη(µ,ν) C(π), completing the proof.

The key to proving Theorem 2 is the following minimax theorem, which could be found in
Adams and Hedberg (1999, Theorem 2.4.1).

Lemma A.3. Let X be a compact Hausdorff space, Y be an arbitrary set, and f : X×Y → R∪{∞}.
Assume that f is lower semi-continuous in x for each fixed y, convex in x, and concave in y. Then

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

Proof of Theorem 2. The > direction of (18) being obvious, we focus on the 6 part. We first assume
c is bounded continuous. For a Polish space X , we denote by Cb(X) the space of all bounded
continuous functions on X . First observe that by definition (14), for π ∈ Πη(µ̄, ν̄),

sup
φ∈Cb(X)

ψ∈Cd
b (Y )

{∫

X

φdη −
∫

X×Y

φ(x)π(dx, dy) +

∫

Y

ψ⊤dν −
∫

X×Y

ψ(y)⊤
dµ

dη
(x)π(dx, dy)

}

=

{
0 if π ∈ Πη(µ,ν);

∞ elsewhere.
(A.9)
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For π ∈ Πη(µ̄, ν̄), we have by using (A.9) that

sup

{∫

X×Y

p(x, y)π(dx, dy) +

∫

X

φdη +

∫

Y

ψ⊤dν | p ∈ Cb(X × Y ),

φ ∈ Cb(X), ψ ∈ Cdb(Y ), φ(x) +ψ(y)⊤
dµ

dη
(x) 6 c(x, y) − p(x, y)

}

= sup

{∫

X×Y

c(x, y)π(dx, dy) +

∫

X

φdη −
∫

X×Y

φ(x)π(dx, dy)

+

∫

Y

ψ⊤dν −
∫

X×Y

ψ(y)⊤
dµ

dη
(x)π(dx, dy) | φ ∈ Cb(X), ψ ∈ Cdb(Y )

}

=

{∫
X×Y c(x, y)π(dx, dy) if π ∈ Πη(µ,ν);

∞ elsewhere.
(A.10)

Since dµ̄/dη is bounded continuous, the set Πη(µ̄, ν̄) is weakly compact. Using (A.10) and Lemma
A.3, we obtain

min
π∈Πη(µ,ν)

∫

X×Y

c(x, y)π(dx, dy)

= min
π∈Πη(µ̄,ν̄)

sup

{∫

X×Y

p(x, y)π(dx, dy) +

∫

X

φdη +

∫

Y

ψ⊤dν | φ ∈ Cb(X),

ψ ∈ Cdb(Y ), p ∈ Cb(X × Y ), φ(x) +ψ(y)⊤
dµ

dη
(x) 6 c(x, y) − p(x, y)

}

= sup

{
min

π∈Πη(µ̄,ν̄)

∫

X×Y

p(x, y)π(dx, dy) +

∫

X

φdη +

∫

Y

ψ⊤dν | φ ∈ Cb(X),

ψ ∈ Cdb(Y ), p ∈ Cb(X × Y ), φ(x) +ψ(y)⊤
dµ

dη
(x) 6 c(x, y) − p(x, y)

}
.

By duality for classic optimal transport,

min
π∈Πη(µ̄,ν̄)

∫

X×Y

p(x, y)π(dx, dy)

= sup

{∫

X

φ̃ dη +

∫

Y

ψ̃ dν̄ | φ̃ ∈ Cb(X), ψ̃ ∈ Cb(Y ), φ̃(x) + ψ̃(y)
dµ̄

dη
(x) 6 p(x, y)

}
.
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Rearranging the terms we have

min
π∈Πη(µ,ν)

∫

X×Y

c(x, y)π(dx, dy)

= sup

{∫

X

φ̃ dη +

∫

Y

ψ̃ dν̄ +

∫

X

φdη +

∫

Y

ψ⊤dν | φ̃ ∈ Cb(X), ψ̃ ∈ Cb(Y ), φ̃(x) + ψ̃(y) 6 p(x, y);

φ ∈ Cb(X), ψ ∈ Cdb(Y ), φ(x) +ψ(y)⊤
dµ

dη
(x) 6 c(x, y) − p(x, y)

}

6 sup

{∫

X

φ̃ dη +

∫

Y

ψ̃ dν̄ +

∫

X

φdη +

∫

Y

ψ⊤dν | φ̃ ∈ Cb(X), ψ̃ ∈ Cb(Y ),

φ ∈ Cb(X), ψ ∈ Cdb(Y ), φ(x) +ψ(y)⊤
dµ

dη
(x) + φ̃(x) + ψ̃(y) 6 c(x, y)

}

6 sup

{∫

X

φdη +

∫

Y

ψ⊤dν | (φ,ψ) ∈ Cb(X) × Cdb(Y ), φ(x) +ψ(y)⊤
dµ

dη
(x) 6 c(x, y)

}
,

thus proving the duality formula (18) in the case where c is bounded continuous.
Consider the general case where c is lower semi-continuous, possibly taking values in R ∪ {∞}.

As in Villani (2003), we can write c = sup cn where each cn is continuous bounded and cn is
nondecreasing in n. For (φ,ψ) ∈ Φc, we denote ϕd(φ,ψ) :=

∫
X φdη +

∫
Y ψ

⊤dν. Also write
In(π) =

∫
X×Y cndπ. We aim to show that

inf
π∈Πη(µ,ν)

I(π) 6 sup
n

inf
π∈Πη(µ,ν)

In(π) 6 sup
n

sup
(φ,ψ)∈Φcn

ϕd(φ,ψ) 6 sup
(φ,ψ)∈Φc

ϕd(φ,ψ). (A.11)

The second inequality follows from the first part of the proof, and the third inequality follows from
that {cn} is nondecreasing in n, so it suffices to prove the first equality.

Since dη/dµ̄ is bounded, Πη(µ,ν) is tight. Consider a minimizing sequence {πn,k} for inf In(π).
By Prokhorov’s theorem, we can extract a subsequence, say πn,k → πn weakly as k → ∞. Note that
πn ∈ Πη(µ,ν) since dµ/dη is continuous. Thus the infimum is attained at πn. Again by Prokhorov’s
theorem, πn → π∗ up to extracting a subsequence. By monotone convergence, In(π∗) → I(π∗). Thus
for any ε > 0, we can find N,M such that

inf
π∈Πη(µ,ν)

I(π) 6 I(π∗) < IN (π∗) + ε < IN (πM ) + 2ε.

Letting ε→ 0 proves the first inequality of (A.11). Combining with the trivial bound

inf
π∈Πη(µ,ν)

I(π) > sup
(φ,ψ)∈Φc

ϕd(φ,ψ)

completes the proof of (18).
To show that the infimum of (18) is attained we still apply Prokhorov’s theorem. For a minimizing

sequence {πk} it has a subsequence converging to π∗ ∈ Πη(µ,ν) (since dµ/dη is continuous) and

I(π∗) = lim
n→∞

In(π∗) 6 lim
n→∞

lim sup
k→∞

In(πk) 6 lim sup
k→∞

I(πk) = inf
π∈Πη(µ,ν)

I(π).

This shows the desired attainability.
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A.3 Proofs of results in Section 5

Proof of Theorem 3. First we prove the easy direction. Suppose that κz ∈ Kz, κ̂ ∈ Mb,1, and

κ̃z′ ∈ K̃z
′ for all z, z′ ∈ R

d
+. Fix a measurable set B ⊆ Y . Since κz ∈ Kz, for V ⊆ [0, 1],

∫

Az

κx
z
({z} × V )µz(dx) = τ(V ).

Therefore we have
∫

X

κx(B)µ(dx) =

∫

X

∫

R

∫

[0,1]

κx
z
(µ′(x), du)κ̂(µ

′(x),u)(dz′, du′)κ̃
(z′,u′)
z
′ (B)µ′(x)µ̄(dx)

=

∫

Rd
+

∫

Az

∫

R

∫

[0,1]

κx
z
({z} × du)κ̂(z,u)(dz′, du′)κ̃

(z′,u′)
z
′ (B)zµz(dx)mµ(dz)

=

∫

R

∫

R

κ̂(z,u)(dz′, du′)κ̃
(z′,u′)
z
′ (B)zτ(du)mµ(dz).

Since κ̂ ∈ Mb,1, it holds for Z ′ ⊆ R
d
+ and V ⊆ [0, 1],

∫

R

κ̂(z,u)(Z ′ × V )zτ(du)mµ(dz) =

∫

Z′

z′τ(V )mν(dz′).

This gives
∫

X

κx(B)µ(dx) =

∫

R

κ̃
(z′,u′)
z
′ (B)z′τ(du′)mν(dz′)

=

∫

R

∫

B
z
′

1B(y)z′κ̃
(z′,u′)
z
′ (dy)τ(du′)mν(dz′).

Using κ̃z′ ∈ K̃z
′ , we have that for B ⊆ Y ,

∫

[0,1]

κ̃
(z′,u′)
z
′ (B)τ(du′) = νz′(B).

We conclude that
∫

X

κx(B)µ(dx) =

∫

Rd
+

∫

B
z
′

1B(y)z′νz′(dy)mν(dz′) = ν(B).

Consider now kernels κz ∈ Kz, κ̃z′ ∈ K̃z
′ , z, z′ ∈ R

d
+ and κ ∈ K(µ,ν) as fixed, where κz is

backward Monge and κ̃z′ is Monge. Denote by Tz the inverse of κz which can be chosen as any
Monge transport from ([0, 1], τ) to (Az, µz). More precisely, we have for any B ⊆ Y ,

∫

X

κx(B)µ̄(dx) =

∫

R

κTz(u)(B)τ(du)mµ(dz) (A.12)

In this case, we may compose the kernels to get a kernel

κ̂(z,u)(D) :=

∫

Rd
+

∫

B
z
′

κTz(u)(dy)κ̃y
z
′(D)mν(dz′), (A.13)

as illustrated by Figure 4.
To show κ̂ ∈ Mb,1, it suffices to show that for Z ′ ⊆ R

d
+ and V ⊆ [0, 1],

(i)
∫
R κ̂

(z,u)(Z ′ × V )τ(du)mµ(dz) = τ(V )mν(Z ′);
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(ii)
∫
R
κ̂(z,u)(Z ′ × V )zτ(du)mµ(dz) =

∫
Z′

z′τ(V )mν(dz′).

To prove (i), we first claim that for B ⊆ Y ,

νz′(B) =

∫

X

κx(B ∩Bz
′)µ̄(dx). (A.14)

This is a direct consequence of the uniqueness of disintegration and for B ⊆ Y ,

ν̄(B) =

∫

Rd
+

∫

Az

κx(B)µz(dx)mµ(dz) (A.15)

=

∫

Rd
+

∫

Az

∫

Rd
+

κx(B ∩Bz
′)mν(dz′)µz(dx)mµ(dz)

=

∫

Rd
+

∫

X

κx(B ∩Bz
′)µ̄(dx)mν(dz′).

It follows that using (A.14) in the second equality, (A.12) in the third, (A.13) in the fourth, that

τ(E1)Q(E2)

=

∫

Rd
+

∫

B
z
′

κ̃y
z
′(E1 × E2)νz′(dy)mν(dz′)

=

∫

Rd
+

∫

B
z
′

κ̃y
z
′(E1 × E2)

∫

X

κx(dy ∩Bz
′)µ̄(dx)mν(dz′)

=

∫

Rd
+

∫

B
z
′

κ̃y
z
′(E1 × E2)

∫

R

κTz(u)(dy ∩Bz
′)τ(du)mµ(dz)mν(dz′)

=

∫

R

κ̂(z,u)(E1 × E2)τ(du)mµ(dz).

To show (ii), we first note that by definition of κ̃z′ , for all z′ and V ⊆ [0, 1],

τ(V ) =

∫

B
z
′

κ̃y
z
′(z
′, V )ν̄(dy).

Therefore, since κ ∈ K(µ,ν), for Z ′ ⊆ R
d
+ and V ⊆ [0, 1], we have

∫

Z′

z′τ(V )mν(dz′) =

∫

Z′

∫

B
z
′

κ̃y
z
′(z
′, V )ν̄(dy)z′mν(dz′)

=

∫

Rd
+

∫

B
z
′

1{ν′(y)∈Z′}κ̃
y
z
′(z
′, V )ν̄(dy)z′mν(dz′)

=

∫

Rd
+

∫

B
z
′

κ̃y
z
′(Z
′ × V )ν(dy)mν(dz′)

=

∫

Rd
+

∫

B
z
′

κ̃y
z
′(Z
′ × V )

∫

X

κx(dy)µ′(x)µ̄(dx)mν(dz′).
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By (A.12) and (A.13), we obtain for an arbitrary Z ′ ⊆ R
d
+ that

∫

Z′

z′τ(V )mν(dz′)

=

∫

Rd
+

∫

B
z
′

κ̃y
z
′(Z
′ × V )

∫

R

κTz(u)(dy)zτ(du)mµ(dz)mν(dz′)

=

∫

R

∫

R
d
+

∫

B
z
′

κTz(u)(dy)κ̃y
ẑ
(Z ′ × V )mν(dz′)zτ(du)mµ(dz)

=

∫

R

κ̂(z,u)(Z ′ × V )zτ(du)mµ(dz).

This finishes the proof that κ̂ ∈ Mb,1. Next we show that after composing these kernels we get back
κ, i.e., for µ′(x) = z and B ⊆ Y , that

κx(B) =

∫

R

∫

[0,1]

κx
z
({z} × du)κ̂(z,u)(dz′, du′)1{S

z
′ (u′)∈B}. (A.16)

Since Tz and κz forms inverses of each other, we have

κx(B) =

∫

[0,1]

κx
z
({z} × du)κTz(u)(B)

=

∫

[0,1]

κx
z
({z} × du)

∫

Rd
+

∫

B
z
′

κTz(u)(dy)mν(dz′)1{y∈B}.

Similarly, since Sz
′ and κ̃z′ are inverses of each other, it holds that

1{y∈B} = κ̃y
z
′(z
′, (Sz

′)−1(B)).

Therefore, using (A.13) in the last step yields

κx(B)

=

∫

[0,1]

κx
z
({z} × du)

∫

Rd
+

∫

B
z
′

κTz(u)(dy)κ̃y
z
′(z
′, (Sz

′)−1(B))mν(dz′)

=

∫

R

∫

[0,1]

κx
z
({z} × du)

∫

B
z
′

κTz(u)(dy)κ̃y
z
′({z′} × du′)1{S

z
′(u′)∈B}mν(dz′)

=

∫

R

∫

[0,1]

κx
z
({z} × du)

∫

Rd
+

∫

B
z̃
′

1{S
z
′ (u′)∈B}κ

Tz(u)(dy)κ̃y
z̃
′(dz

′, du′)mν(dz̃′)

=

∫

R

∫

[0,1]

κx
z
({z} × du)κ̂(z,u)(dz′, du′)1{S

z
′ (u′)∈B},

proving (A.16), hence concluding the proof.

Proof of Corollary 3. The existence of a backward martingale Monge coupling follows from Propos-
ition 1 and Theorem 2.1 of Nutz et al. (2022). We let κ̂ in (19) be induced by the Monge map h in
the R

d
+ dimension and identity in the [0, 1] dimension. Thus, there exists κ ∈ K(µ,ν) given by (19)

such that

κx(B) =

∫

[0,1]

κxµ′(x)(µ
′(x), du)κ̃

(h(µ′(x)),u)
h(µ′(x)) (B). (A.17)

Since µ is jointly atomless, each µz is atomless, hence we may pick κz that is Monge for z ∈ R
d
+.

As a consequence, κ is given by a composition of two Monge maps, hence is Monge. Denote by f
the map that induces κ. It is then immediate from (A.17) that ν ′(f(x)) = h(µ′(x)).
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Proof of Theorem 4. Assume that mµ = mν and c(x, y) is continuous. Then the martingale trans-
port is unique, so that any κ̂ ∈ Mb,1 must be the identity in the first coordinate. The transport
cost (20) then simplifies into

C(κ) =

∫

R

∫

[0,1]

κ̂(z,u)({z} × du′)

(∫

Az

∫

Bz

c(x, y)κx
z
({z} × du)κ̃(z,u

′)
z

(dy)µz(dx)

)
mµ(dz)

=

∫

Rd
+

∫

Az

∫

Bz

c(x, y)

∫

[0,1]

∫

[0,1]

κx
z
({z} × du)κ̂(z,u)({z} × du′)κ̃(z,u

′)
z

(dy)µz(dx)mµ(dz),

so that

inf
κ̂∈Mb,1

C(κ) =

∫

Rd
+

(
inf

κ̂∈Mb,1

∫

Az

∫

Bz

c(x, y)

∫

[0,1]

∫

[0,1]

κx
z
({z} × du)

κ̂(z,u)({z} × du′)κ̃(z,u
′)

z
(dy)µz(dx)

)
mµ(dz)

>

∫

R
d
+

(
inf

κ∈K(µz,νz)

∫

Az

∫

Bz

c(x, y)κx(dy)µz(dx)

)
mµ(dz) (A.18)

=

∫

Rd
+

Ic(µz, νz)P (dz).

We next show the inequality in (A.18) is in fact an equality, so that (i) is equivalent to (iii). Recall
from the disintegration theorem that the map

R
d
+ → P(X) × P(Y ), z 7→ (µz, νz)

is measurable. By Corollary 5.22 in Villani (2009) and since c is continuous, there exists a measurable
map z 7→ πz such that for each z, πz is an optimal transport plan from µz to νz. We then define the
average measure

π :=

∫

Rd
+

πzmµ(dz).

It is straightforward to check using (15) that π ∈ Π(µ,ν). Alternatively, using the kernel formulation,
this means there exists a well-defined stochastic kernel κ ∈ K(µ,ν) such that κ ∈ K(µz, νz) is an
optimal transport from µz to νz. Therefore, (A.18) is an equality, and equality holds if and only if

Ic(µz, νz) =

∫

Az

∫

Y

c(x, y)κ(x, dy)µz(dx).

That is, κ is optimal from µz to νz for P -a.s. z. This gives the equivalence of (ii) and (iii).

Proof of Proposition 6. To show the > direction, consider any π ∈ Π(µ,ν) and any (φ, ψ) ∈ Φ̃(c).
Recall from Theorem 4 that

π({(x, y) | µ′(x) 6= ν ′(y)}) = 0.

It then holds that
∫

X

φdµ̄+

∫

Y

ψ dν̄ =

∫

X×Y

φ(x) + ψ(y)π(dx, dy) 6

∫

X×Y

c dπ.

This proves the > in (24).
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Using (22) and the classic duality, it suffices to prove

sup

{∫

X

φdµ̄+

∫

Y

ψ dν̄ | (φ, ψ) ∈ Φ̃c

}

>

∫

Rd
+

sup

{∫

X

φz dµz +

∫

Y

ψz dνz | φz(x) + ψz(y) 6 c(x, y)

}
mµ(dz).

By Theorem 1.39 of Santambrogio (2015), the suprema on the right-hand side are attained for
bounded continuous functions φz, ψz. By Theorem 18.19 of Aliprantis and Border (2006), there
exists a measurable selection z → (φz, ψz) where each (φz, ψz) is a maximizer. We define φ(x) =
φµ′(x)(x) and ψ(y) = ψν′(y)(y). Since z 7→ φz(x) is measurable and x 7→ φz(x) is continuous,
we have (z, x) 7→ φz(x) is jointly measurable, and hence φ, ψ are measurable. Moreover, (φ, ψ) ∈
L1(µ̄) × L1(ν̄) since c is bounded. Evidently, (φ, ψ) ∈ Φ̃c. It also follows from the disintegration
theorem that ∫

X

φdµ̄ =

∫

Rd
+

∫

X

φz dµzmµ(dz).

This proves the desired inequality and hence (24).
By Theorem 4, the infimum in (24) is attained. Our construction of the maximizers φ, ψ above

also implies that the supremum is attained.

Proof of Proposition 8. We first note that, since µ1 ∼ µ̄ and ν1 ∼ ν̄, by Lemma 3.5 of Shen et al.
(2019), µ ≃ ν is equivalent to

(
dµ1

dµ1
,

dµ2

dµ1

)
|µ1

law
=

(
dν1
dν1

,
dν2
dν1

)
|ν1 .

By proper transformations we may without loss of generality assume that µ1 and ν1 are standard
Gaussian, which we denote by χ. We then have

(
dµ2

dχ

)
|χ law

=

(
dν2
dχ

)
|χ.

Suppose that µ2 = N(m,Σ) and ν2 = N(n,Ω). Plugging in the densities we obtain (where Z is
a standard Gaussian random vector)

√
1

det Σ
exp

(
−1

2
((Z −m)⊤Σ−1(Z−m) − Z⊤Z)

)

law
=

√
1

det Ω
exp

(
−1

2
((Z− n)⊤Ω−1(Z− n) − Z⊤Z)

)
.

Taking logarithm we obtain

(Z−m)⊤Σ−1(Z−m) − Z⊤Z + log det Σ
law
= (Z− n)⊤Ω−1(Z− n) − Z⊤Z + log det Ω.

Using (5) in Good and Welch (1963) we can compute the Laplace transforms, so that for all t,

exp(−2(tΣ−1m)⊤(I − 2t(Σ−1 − I))−1(tΣ−1m))

| det(I − 2t(Σ−1 − I))|1/2 × exp
(
t(m⊤Σm + log det Σ)

)

=
exp(−2(tΩ−1n)⊤(I − 2t(Ω−1 − I))−1(tΩ−1n))

| det(I − 2t(Ω−1 − I))|1/2 × exp
(
t(n⊤Ωn + log det Ω)

)
.
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After squaring both sides, we may recognize either side as a product of a rational function in t
and an exponential of a rational function in t (see e.g., Mathai and Provost (1992), Theorem 3.2a.2).
The rational functions on both sides must coincide. Thus, for all t,

| det(I − 2t(Σ−1 − I))| = | det(I − 2t(Ω−1 − I))|. (A.19)

Taking logarithm of the rest we see that the Taylor coefficients around t = 0 of −2(tΣ−1m)⊤(I −
2t(Σ−1 − I))−1(tΣ−1m) and t(m⊤Σm + log det Σ) separate. This yields

(Σ−1m)⊤(I − 2t(Σ−1 − I))−1(Σ−1m) = (Ω−1n)⊤(I − 2t(Ω−1 − I))−1(Ω−1n). (A.20)

From (A.19), we have that the characteristic polynomials of Σ and Ω coincide. Since both of them are
symmetric and positive definite, they have the same eigenvalues counted with multiplicity. Writing
Σ−1 = PDP−1 and Ω−1 = QD′Q−1 with P,Q orthogonal, we have that there is an elementary
permutation matrix E such that D = ED′E−1. This gives Σ−1 = (PEQ−1)Ω−1(PEQ−1)−1.
Plugging this into the (A.20), we have for all t,

((PEQ−1)−1Σ−1m)⊤(I − 2t(Ω−1 − I))−1((PEQ−1)−1Σ−1m)

= (Ω−1n)⊤(I − 2t(Ω−1 − I))−1(Ω−1n).

By expanding the term (I−2t(Ω−1−I))−1 and comparing the coefficients in the expansion, we have
for any k > 2,

((PEQ−1)−1m)⊤Ω−k((PEQ−1)−1m) = n⊤Ω−kn.

Since Ω−1 = QD′Q−1, we have

((PE)−1m)⊤(D′)k((PE)−1m) = (Q−1n)⊤(D′)k(Q−1n). (A.21)

Since Ω is positive definite, D′ is diagonal and has positive entries along the diagonal. Denote
λ1, . . . , λℓ the distinct eigenvalues (or distinct diagonal entries) of D′ and S1, . . . , Sℓ the correspond-
ing eigenspaces with dimensions d1, . . . , dℓ. The system of equations (A.21) then becomes ℓ linearly
independent equations since the rank of the Vandermonde matrix formed by diagonal entries of D′

is at most ℓ. In this way, (A.21) reduces to ℓ restrictions that the lengths of the vectors (PE)−1m
and Q−1n are the same on each Sℓ. Hence, there exists an orthogonal matrix O consisting of ℓ
blocks on the subspaces Sℓ, each of which is an element in O(dℓ) (the set of orthogonal matrices of
dimension dℓ), such that Q−1n = O(PE)−1m. Thus n = QO(PE)−1m = (QOQ−1)(PEQ−1)−1m.
Since D′ is a multiple of identity on each Sℓ, it commutes with O on each block, hence D′ commutes
with O. Therefore, the matrix

(PEQ−1)−1Σ−1(PEQ−1) = Ω−1 = QD′Q−1

commutes with QOQ−1. We conclude that

Ω−1 = (QO(PE)−1)−1Σ−1(QO(PE)−1).

That is, there exists a matrix M := QO(PE)−1 such that Ω−1 = M−1Σ−1M and n = Mm.
Therefore, the linear map M transports µ2 to ν2. Since M is orthogonal, it also transports χ = µ1

to χ = ν1. This concludes the proof.

A natural question to ask is whether Proposition 8 extends to dimensions d > 2. In this case,
computation of Laplace transforms yields that instead of the relation (A.19) above, we have for all
t = {tj}26j6d that

∣∣∣∣∣∣
det


I − 2

d∑

j=2

tj(Σ
−1
j − I)



∣∣∣∣∣∣

=

∣∣∣∣∣∣
det


I − 2

d∑

j=2

tj(Ω
−1
j − I)



∣∣∣∣∣∣
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and our goal is to provide an orthogonal matrix P such that for any 2 6 j 6 d, Σ−1j = PΩ−1j P−1.
This is related to the simultaneous similarity of matrices problem, which was solved in Friedland
(1983) in the complex case. Friedland (1983) proved that given some mild conditions on the char-
acteristic polynomial

p(λ, x) := det


λI −

d∑

j=1

Ajx
j


 ,

there are only finitely many orbits of tuples of symmetric matrices (A1, . . . , Ad) under the action
of simultaneous conjugation by an orthogonal matrix. An open problem was raised whether the
same holds for real-valued matrices in Friedland (1983). A counterexample was provided later in
Sergeichuk (1998) with matrices that are not positive definite. In addition, note that to apply to
our situation, we need a single orbit instead of a finite number of them. Nevertheless, we are not
aware of counterexamples in the case d > 2 to Proposition 8. If two-way transports exist between
tuples of Gaussian measures while no linear transport exists, it is interesting to know what such a
transport looks like.

A.4 On the Wasserstein distance between vector-valued measures

The aim of this section is to propose a notion of the Wasserstein distance between R
d-valued

probability measures on a Polish space X equipped with a metric ρ, using the optimal cost in
simultaneous transport. Throughout this section, we consider the reference measure η = µ̄ and a
number p > 1.

Let us first recall the classic definition of the Wasserstein distance. Consider a Polish space (X, ρ)
and define

Pp(X) :=

{
µ ∈ P(X) |

∫

X

ρ(x0, x)pµ(dx) <∞ for some x0 ∈ X

}
.

The Wasserstein distance between probability measures µ, ν ∈ Pp(X) is the metric given by

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫

X×X

ρ(x, y)pπ(dx, dy)

)1/p

.

The space (Pp(X),Wp) is again a Polish space.
For R

d-valued measures, we may similarly define

P(X)dp,ρ :=

{
µ ∈ P(X)d |

∫

X

ρ(x, x0)pµ̄(dx) <∞ for some x0 ∈ X

}
.

The following consequence of Theorem 4 provides a collection E of Rd-valued probability measures
E ⊆ P(X)dp,ρ such that for any µ,ν ∈ E , Wp(µ,ν) = Wp(ν,µ) < ∞. We recall the equivalence
relation ≃ from Section 5.3.

Proposition A.1. Let µ,ν ∈ P(X)d and suppose that both Π(µ,ν) and Π(ν,µ) are non-empty
and c(x, y) is continuous and symmetric in x, y. Then

Ic(µ,ν) = Ic̃(ν,µ)

where c̃(y, x) = c(y, x).

Proof of Proposition A.1. By Theorem 4, we have

Ic(µ,ν) =

∫

Rd
+

Ic(µz, νz)P (dz) =

∫

Rd
+

Ic̃(νz, µz)P (dz) = Ic̃(ν,µ),

where the second step follows since the classic optimal transport problem is symmetric.
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The upshot of Proposition A.1 is that, for µ,ν belonging to the same equivalence class we can
define the Wasserstein distance

Wp(µ,ν) :=

(
inf

π∈Π(µ,ν)

∫

X×X

ρ(x, y)pπ(dx, dy)

)1/p

.

By the Decomposition Theorem, for µ,ν ∈ EP , we have

Wp(µ,ν)p =

∫

Rd
+

Wp(µz, νz)pP (dz).

The following corollary then follows from standard results on the analysis on the space of random
variables taking values in a Polish space; see Crauel (2002).

Corollary A.1. For each 1 6 p < ∞, the metric space (EP ,Wp) is complete and separable, hence
a Polish space.

Since for each κ ∈ K(µ,ν),

∫

X×X

c(x, y)µ̄⊗ κ(dx, dy) =
1

d

d∑

j=1

∫

X×X

c(x, y)µj ⊗ κ(dx, dy),

we have by taking infimum that

Wp(µ,ν)p >
1

d

d∑

j=1

Wp(µj , νj)
p. (A.22)

It is also straightforward to see that (A.22) is not an equality in Example 14.

Example A.1. As a sanity check, let us consider the case where µ1 = · · · = µd and ν1 = · · · = νd.
Then according to discussions in Section 3.3, the optimal transport from µ1 to ν1 is also optimal
from µ to ν. This means

Wp(µ,ν)p =
1

d

d∑

j=1

Wp(µj , νj)
p = Wp(µ1, ν1)p.

In other words, in the trivial case where all measures are equal, our Wasserstein distance is the same
as the classic Wasserstein distance between such measures.

As another sanity check, consider d = 1, then for any µ, ν, both Π(µ, ν) and Π(ν, µ) are non-
empty, so that Wp is a metric on P(X)p,ρ and it coincides with the classic Wasserstein distance.

Example A.2. Suppose that µ ∈ P(R)d, define T (x) = ax + b for some a > 0, b ∈ R and
ν := µ◦T−1. Consider the convex cost c(x, y) = |x−y|p, p > 1. Then since the linear transformation
is comonotone, the associated kernel κT ∈ K(µ̄, ν̄) is an optimal transport from µ̄ to ν̄. By arguments
in Section 3.3, κT is also optimal from µ to ν. In particular, (A.22) is an equality. Moreover, by
the arguments in Section 3.3, in case µ1, . . . , µd have disjoint supports, (A.22) is also an equality.

A.5 Dual MOT-SOT parity

Duality for MOT was first established by Beiglböck et al. (2013) in the following form. Given
probability measures µ, ν on R with µ �cx ν and an upper semi-continuous cost function c, it holds

inf
π∈M(µ,ν)

∫
c(x, y)π(dx, dy)

= sup

{∫
φdµ+

∫
ψ dν | φ(x) + ψ(y) + h(x)(y − x) 6 c(x, y)

}
, (A.23)
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where it is also noted that the supremum may not always be attained; see also Beiglböck et al.
(2017). Our goal in this section is to connect the dual problems in (18) and (A.23) when the primal
problems are connected via the MOT-SOT parity.

Let us consider two measures P,Q supported on [0, 2] with mean 1 (this extends natually to
compactly supported measures), with P �cx Q. Let c(x, y) be a continuous cost function. We next
construct measures µ,ν on [0, 1] so that the corresponding SOT problem is connected to the MOT
problem with marginals P,Q. Let F,G be cdfs for P,Q and assume they are continuously invertible.14

Let τ be the Lebesgue measure on [0, 1] and define dµ1 = F−1dτ, dµ2 = (2 − F−1)dτ, dν1 =
G−1dτ, dν2 = (2 −G−1)dτ . In this case, µ′ and ν ′ are injective. By (18) and Example 9, the dual
SOT problem solves

sup

{∫
φ(x)dx +

∫
ψ1(y)G−1(y)dy +

∫
ψ2(y)(2 −G−1(y))dy |

φ(x) + ψ1(y)F−1(x) + ψ2(y)(2 − F−1(x)) 6 c(F−1(x), F−1(y))

}

= sup

{∫
φ(x)dx +

∫
ψ1(y)G−1(y)dy +

∫
ψ2(y)(2 −G−1(y))dy |

φ(F (x)) + ψ1(G(y))x + ψ2(G(y))(2 − x) 6 c(x, y)

}

= sup

{∫
φ(F−1(x))dx +

∫
ψ1(G−1(y))G−1(y)dy +

∫
ψ2(G−1(y))(2 −G−1(y))dy |

φ(x) + (ψ1(y) − ψ2(y))x + 2ψ2(y) 6 c(x, y)

}

= sup

{∫
φ(x)P (dx) +

∫
ψ1(y)yQ(dy) +

∫
ψ2(y)(2 − y)Q(dy) |

φ(x) + (ψ1(y) − ψ2(y))x + 2ψ2(y) 6 c(x, y)

}

= sup

{∫
φ(x)P (dx) +

∫
ψ(y)Q(dy) | φ(x) + ψ(y) + (y − x)h(y) 6 c(x, y)

}
,

using change of variables. This is precisely the (pointwise) MOT duality (A.23). The dual MOT-

SOT parity can be phrased as follows: if (φ̂, ψ̂, h) is a dual optimizer for MOT and (φ, ψ1, ψ2) for
SOT, then

φ̂(z) = φ(F−1(z)) and ψ̂(z′) = φ1(G−1(z′))z′ − φ2(G−1(z′))z′ + 2ψ2(G−1(z)).

B A small review of optimal transport in higher dimensions

As mentioned in the introduction, we briefly survey a few directions on generalizing the Monge-
Kantorovich optimal transport problem in higher dimensions present in the existing literature. The
closest to our setting is Wolansky (2020) in point (vi) below.

14These regularity conditions on P,Q do not affect the non-attainability of the supremum in (A.23). Indeed, it is
the irreducibility of the martingale coupling that matters.

43



(i) The multi-marginal optimal transport problem is a generalization of the classic Monge-
Kantorovich transport problem concerning couplings of more than two marginals. For example,
the objective of the Kantorovich version of such problems is to minimize

∫

X1×···×Xd

c(x1, . . . , xd)π(dx1, . . . , dxd)

among measures π ∈ P(X1 × · · · × Xd) with marginals µ1, . . . , µd. A duality formula can
be established. However, the existence of a Monge transport is a more delicate problem for
dimension d > 3. This problem has applications in physics and economics. See Pass (2015) and
Santambrogio (2015) for a review and Rachev and Rüschendorf (1998) for a rich treatment.
A solution for the minimization problem with c(x1, . . . , xd) = (x1 + · · · + xd)2 is obtained by
Wang and Wang (2016) under some conditions on (µ1, . . . , µd).

(ii) More generally, Rüschendorf (1991) considered the multivariate marginal problem. For a col-
lection E of subsets of {1, . . . , n}, consider the set of measures on X1×· · ·×Xn that have fixed
projections onto each

∏
j∈J Xj, J ∈ E . The existence of such measures is a non-trivial task.

A duality formula in a more general context was established earlier by Rüschendorf (1984).
For more recent results, see Gladkov et al. (2019, 2021) for the special case where E consists of
subsets of cardinality k, k 6 n. This problem is also connected to Monge-Kantorovich problem
with linear constraints.

(iii) Bacon (2020) generalized the classic Monge-Kantorovich transport problem to multiple meas-
ures, with both transports and transfers allowed, with the name “vector-valued optimal trans-
port”. Given probability measures µ = (µ1, . . . , µd) and ν = (ν1, . . . , νd), one is allowed to
transport not only from each µj to νj , but also from each µj to νj′ where j 6= j′ (this is called
a transfer), but the costs may be different. That is, the cost function is matrix-valued with
d2 components and the goal is to minimize the total cost (such a setting does not apply to
our main motivating example in Example 1). The existence of a transport is guaranteed and
duality is obtained. Bacon (2020) also investigated an extension of the Wasserstein distances.

(iv) Some earlier studies are in a similar direction as Bacon (2020). To list a few, in Chen et al.
(2018a,b) and Ryu et al. (2018), the notion of “vector-valued optimal transport” was proposed.
Inspired by the dynamic formulation of classic optimal transport with the L2 cost, they took the
Benamou-Brenier perspective and formulated an optimal transport problem between vector-
valued measures using divergences in a network flow problem. Similarly as Bacon (2020),
both transports and transfers are allowed. In addition, numerical algorithms are available and
applications to image processing are discussed.

(v) More recently, Ciosmak (2021) proposed a generalization of the Kantorovich-Rubinstein trans-
port problem to higher dimensions, with the name “optimal transport for vector measures”.
Consider a metric space (X, ρ) and a signed measure η on X such that η(X) = 0 and there
exists x0 ∈ X such that

∫
X ρ(x, x0) ‖η‖ (dx) < ∞, where ‖η‖ is the total variation norm of η.

This problem deals with

inf
π:P1π−P2π=η

∫

X×X

ρ(x, y) ‖π‖ (dx, dy)

where π is an R
d-valued measure, and P1, P2 are projections onto the first two coordinates.

Existence of π is guaranteed. The Kantorovich-Rubinstein duality formula is extended.

(vi) In a recent monograph, Wolansky (2020) discussed the notions of vector-valued transport and
optimal multi-partitions. This is similar to our work as such vector-valued transports are indeed
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simultaneous transports. However, the focus is on the case where the support of ν̄ is finite.15

Most of the results concern duality formulas and the structure (e.g., existence and uniqueness)
of the optimal multi-partition, where Y is a finite set and under certain assumptions. A
different notion of Wasserstein distance between µ and ν was formulated by choosing both µ
and ν as the measures at origin, defined as

Vp(µ,ν) :=

(
inf

η∈M(X)d
Wp(µ,η)p + Wp(ν,η)p

)1/p

.

An application to learning theory is also discussed. The only mathematical overlaps between
our paper and Wolansky (2020) are Proposition 1 and Theorem 2, where our results offer more
generality.

C Application to a labour market equilibrium model

We discuss a matching equilibrium model in a labour market via simultaneous transport, similar
to that in the classic transport setting. First, we state the relevant version of the duality formula
in Theorem 2. Suppose that µ = (µ1, . . . , µd) is a vector of probabilities on X , ν = (ν1, . . . , νd)
is a vector of probabilities on Y , and η ∼ µ̄. Assume that X and Y are compact, and g : X ×
Y → [−∞,∞) is upper semi-continuous. The duality formula, with a maximization in place of a
minimization in (18), is

sup
π∈Πη(µ,ν)

∫

X×Y

g dπ = inf
(φ,ψ)∈Φg

∫

X

φdη +

∫

Y

ψ⊤ dν, (A.24)

where

Φg :=

{
(φ,ψ) ∈ C(X) × Cd(Y ) | φ(x) +ψ(y) · dµ

dη
(x) > g(x, y)

}
.

Let x ∈ X represent worker labels and y ∈ Y represent firms. The interpretation of η, µ and ν
is given below.

1. η is the distribution of the workers, i.e., how much proportion of the workers are labelled with
x ∈ X . In a discrete setting of n workers in total, it would not hurt to imagine that η(x) = 1/n;
i.e., each worker has a different label.

2. There are d types of skills in this production problem. Workers with the same label have the
same skills. The distribution µi describes the supply of type-i skill provided by the workers.
In a discrete setting, µi(x) is the type-i skill provided by each worker label x. We denote by
µ′ = dµ/dη, that is, the (per-worker) skill vector.

3. The distribution νi describes the demand of type-i skill from the firms. In a discrete setting,
νi(y) is the type-i skill demanded by each firm y.

Assume that the total demand and the total supply of skills are equal, and hence both µ and ν are
normalized to have total mass of (1, . . . , 1). A matching between the workers and the firms is an
element π of Πη(µ,ν). Let g(x, y) represent the production of firm y hiring worker x per unit of
worker. For a given matching π, the total production in the economy is

∫
g dπ.

Take two arbitrary functions w : X → R and p : Y → R
d. As usual, w(x) represents the wage

of worker x. The function p represents the profit-per-skill vector of firm y in the following sense: if

15which explains the name “multi-partitions”. Due to the nature of the problem, it seems mathematically difficult
to approximate the general theory by the special case where Y is discrete.
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firm y employs a skill vector q ∈ R
d
+, then the total profit of the firm is p(y) · q. Taking q = µ′(x),

the profit generated from hiring each worker x is p(y) · µ′(x). The total profit of all firms is

∫

X×Y

p(y) · µ′(x)π(dx, dy) =

∫

Y

p⊤dν,

which follows from the definition of π.
For worker x, their objective is to choose a firm to maximize their wage, that is

max
y∈Y

{g(x, y) − p(y) · µ′(x)} .

For firm y, its objective is to hire workers to maximize its profit, that is

max
x∈X

{g(x, y) − w(x)} .

For a social assignment (w,p) and a matching π ∈ Πη(µ,ν), an equilibrium is attained if

(a) the social assignment is optimal, that is

w(x) = max
y∈Y

{g(x, y) − p(y) · µ′(x)}

and
p(y) · µ′(xy) = g(xy, y) − w(xy) = max

x∈X
{g(x, y) − w(x)} .

(b) the total production in the economy is at least as large as the total wage plus the total profit,
that is, ∫

X×Y

g dπ >

∫

X

w dη +

∫

Y

p⊤dν. (A.25)

Since (a) implies
w(x) + p(y) · µ′(x) > g(x, y) (A.26)

for all x ∈ X and y ∈ Y , integrating (A.26) with respect to π gives

∫

X

w dη +

∫

Y

p⊤dν >

∫

X×Y

g dπ,

and hence, (A.25) has to hold as an equality, and this implies the duality (A.24). Again, an equilib-
rium exists if and only if duality holds with both the infimum and the supremum attained. In the
finite-state setting, the above attainability is automatic.
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Nöldeke, G. and Samuelson, L. (2018). The implementation duality. Econometrica, 86(4), 1283–1324.

Nutz, M. and Stebegg, F. (2018). Canonical supermartingale couplings. The Annals of Probability,
46(6), 3351–3398.

Nutz, M. and Wang, R. (2022). The directional optimal transport. Annals of Applied Probability,
32(2), 1400–1420.

Nutz, M., Wang, R., and Zhang, Z. (2022). Martingale Transports and Monge Maps. ArXiv preprint
arXiv:2209.14432.

48



Pass, B. (2015). Multi-marginal optimal transport: theory and applications. ESAIM: Mathematical
Modelling and Numerical Analysis, 49(6), 1771–1790.
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