
ar
X

iv
:2

41
1.

05
20

4v
1 

 [
m

at
h.

PR
] 

 7
 N

ov
 2

02
4

Sample Path Properties of the Fractional

Wiener–Weierstrass Bridge

Alexander Schied∗ Zhenyuan Zhang∗∗

November 11, 2024

Abstract

Fractional Wiener–Weierstrass bridges are a class of Gaussian processes that arise from re-
placing the trigonometric function in the construction of classical Weierstrass functions by a
fractional Brownian bridge. We investigate the sample path properties of such processes, includ-
ing local and uniform moduli of continuity, Φ-variation, Hausdorff dimension, and location of the
maximum. Our analysis relies heavily on upper and lower bounds of fractional integrals, where
we establish a novel improvement of the classical Hardy–Littlewood inequality for fractional
integrals of a special class of step functions.

Keywords: Fractional Wiener–Weierstrass bridge, moduli of continuity, Φ-variation, Hausdorff dimen-
sion, Hardy–Littlewood inequality for fractional integrals
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1 Introduction

In recent years, interest in non-diffusive stochastic models—those with sample paths either rougher
or smoother than standard Brownian motion—has grown significantly. This trend is driven by several
factors. First, advances in Lyons’ rough path theory [11], modeling with fractional Brownian motion
[27], and pathwise Itô calculus for trajectories with p-th variation for p > 2 [7] have all spurred further
research. Second, new applications of non-diffusive processes, such as rough volatility modeling [4],
have underscored their practical relevance.

The phenomenon of roughness has also played a significant role in fractal geometry. Consider, for
instance, the classical Weierstrass function, which, for α ∈ (0, 1) and b ∈ {2, 3, . . . }, is defined as

φα,b(t) =
∞∑

n=0

αn cos(2πbnt), t ∈ [0, 1]. (1)

Recent analyses have studied this function in a manner analogous to the sample paths of stochastic
processes. Among the properties explored are the local and uniform moduli of continuity [8], the
existence of a local time [19], the Hausdorff dimension of its graph [25], and its suitability as an
integrator for pathwise Itô calculus [39].
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In this paper, we continue the analysis of a new class of stochastic processes introduced by the
authors in [40], aiming to provide a synthesis between fractional Gaussian processes and fractal ge-
ometry. These processes are obtained by replacing the cosine function in (1) by the trajectories of
a fractional Brownian bridge BH with Hurst parameter H (the precise definition of BH is given by
(3) below). More precisely, the fractional Wiener–Weierstrass bridge with parameters α ∈ (0, 1),
b ∈ {2, 3, . . . }, and H ∈ (0, 1) is defined as the stochastic process

Y (t) :=
∞∑

n=0

αnBH({bnt}), 0 ≤ t ≤ 1,

where {x} is the fractional part of x ≥ 0. Although Y remains a Gaussian process, it displays a
number of intriguing properties. For instance, it was shown in [40] that there is no combination of
parameter values (α, b,H) for which Y is a semimartingale. It was shown moreover that the covariance
function c(s, t) := E[Y (s)Y (t)] typically has a fractal structure and, for fixed s ∈ (0, 1), can have the
same roughness as the sample paths of Y . Here, the roughness of a function f : [0, 1] → R is quantified
through its roughness exponent along the b-adic partitions, which according to [17] is defined as a
number R ∈ [0, 1] for which

lim
n↑∞

bn−1∑

k=0

∣∣f((k + 1)b−n)− f(kb−n)
∣∣p =

{
∞ if p < 1/R;

0 if p > 1/R.
(2)

The main results of [40] identify the roughness exponent R of the sample paths of Y and compute
their p-th variation (i.e., the limit on the left-hand side of (2)) for p = 1/R. These results show that
two distinct regimes emerge, arising from the competition between the roughness exponents of the
trajectories of the fractional Brownian bridge BH and the classical Weierstrass function in (1), which
are given by H and K := 1 ∧ (− logb α), respectively.

In this paper, we continue our analysis of the fractional Wiener–Weierstrass bridge, focusing on
several sample path properties: (Wiener–Young) Φ-variation, the local and uniform moduli of conti-
nuity, the Hausdorff dimension of the graph, and the location of the maximum. Our results highlight
the significance of the distinct regimes arising from the relationship between the roughness exponents
H and K. Specifically, for H < K, we observe that the fine structure of the sample paths retains
characteristics similar to those of BH . In contrast, when K < H , the behavior of the trajectories
of Y resembles that of a randomized version of the classical Weierstrass function. In this case, the
limits of the local and uniform moduli of continuity are governed by non-degenerate random variables,
providing an example for which the well-known zero-one law for the moduli of continuity of Gaussian
processes fails (see Lemma 7.1.1 of [29] or Lemma 4.6 below). The critical case H = K presents the
most intriguing and challenging regime. Here, the fine structure of the fractional Wiener–Weierstrass
bridge deviates from both the classical Weierstrass function and the trajectories of BH .

There is extensive literature on the sample path properties of Gaussian processes; see, for example,
the books by Adler [2] and Marcus and Rosen [29]. However, most proofs in this area rely on the sta-
tionarity of increments and explicit knowledge of the covariance function. In contrast, the fractional
Wiener–Weierstrass process has highly non-stationary increments, a fractal covariance structure, and
lacks self-similarity, posing significant challenges for our analysis. To handle the complex covariance
structure of Y , we establish upper and lower bounds on E[(Y (t)−Y (s))2] for sufficiently small |t− s|.
These bounds depend on a novel extension of the classical Hardy–Littlewood inequality for fractional
integrals, presented in Theorem 3.3. The non-stationarity of the increments requires us to refine
traditional methods for deriving sample path properties of Gaussian processes. For example, in The-
orem 4.1, we establish a general result on the Φ-variation of Gaussian processes, extending Theorem
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4 from [24] to processes with non-stationary increments. Additionally, we employ classic techniques
such as strong local non-determinism, the Sudakov minoration, and the concentration of measure.

The rest of this paper is organized as follows. In Section 2, we state our main results, beginning with
Theorem 2.2 on the Φ-variation of the sample paths, followed by Theorem 2.3 and 2.4, which address
the local and uniform moduli of continuity. In Theorem 2.6, we determine the Hausdorff dimension
of the graph of Y as (2 − H) ∨ (2 −K), assuming that K > 2H − 1. Theorem 2.7 establishes that
the location of the maximum of Y has an atomless distribution if and only if H > K. Section 2
concludes with an outlook and a list of open questions. Section 3 provides auxiliary results, some of
which may be of independent interest—particularly the extended Hardy–Littlewood inequality given
by Theorem 3.3, which plays a central role in our proofs. Finally, Section 4 contains the proofs of our
main results.

2 Main results

Following [40], let WH = (WH(t))t≥0 be the fractional Brownian motion with Hurst parameter H ∈
(0, 1) and starting point WH(0) = 0. We pick a deterministic function κ : [0, 1] → [0, 1] satisfying
κ(0) = 0 and κ(1) = 1. The stochastic process

BH(t) :=WH(t)− κ(t)WH(1), t ∈ [0, 1], (3)

can then be regarded as a fractional Brownian bridge with Hurst parameter H . For instance, under
the choice

κ(t) :=
1

2
(1 + t2H − (1− t)2H), (4)

the law of BH is equal to the law of WH conditioned on the event {WH(1) = 0}; see [16]. However,
the specific form of κ will not be needed in the sequel. We will only assume that BH is of the form
BH(t) = WH(t)− κ(t)WH(1) for some function κ : [0, 1] → [0, 1] that satisfies κ(0) = 0 and κ(1) = 1
and that is Hölder continuous with some exponent τ ∈ (H, 1]. For example, the function κ in (4)
satisfies these requirements. Both κ and BH will be fixed throughout this paper. We denote by {x}
the fractional part of x ≥ 0.

Definition 2.1. ([40]) For α ∈ (0, 1) and b ∈ {2, 3, . . . }, the stochastic process

Y (t) = Yα,b,H(t) :=

∞∑

n=0

αnBH({bnt}), 0 ≤ t ≤ 1, (5)

is called the fractional Wiener–Weierstrass bridge with parameters α, b, and H .

The fractional Wiener–Weierstrass bridge is a Gaussian process with highly non-stationary in-
crements and, unlike fractional Brownian motion, is not self-similar. Therefore, many techniques
for studying sample path properties are not available. In addition, it has continuous but nowhere-
differentiable sample paths, a fractional covariance structure, and is not a semimartingale [40].

Throughout this paper, we define

K := min
{
1,
(
− logb α

)}
. (6)

The key message from [40] is the following.
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The roughness of the fractional Wiener–Weierstrass bridge Y = (Y (t))t∈[0,1] is determined
by a competition between the Hurst exponent H of the underlying fractional Brownian
bridge and the roughness exponent K from the Weierstrass-type convolution.

In other words, the process Y often inherits sample path properties from the fractional Brownian
motion WH if H < K, and from the Weierstrass fractal construction if H > K. Therefore, the
investigation of the sample path properties of Y often bifurcates, depending on the relation between
K and H . For instance, the roughness of a function f : [0, 1] → R can be quantified by the p-th
variation along the sequence of b-adic partitions, defined as

〈f〉(p)t := lim
n↑∞

⌊tbn⌋∑

k=0

∣∣f((k + 1)b−n)− f(kb−n)
∣∣p, t ∈ [0, 1], (7)

provided the limit exists for all t, where ⌊x⌋ denotes the largest integer less than or equal to x (see
[17]). Theorem 2.3 of [40] shows that the p-th variation of Y along the sequence of b-adic partitions
is non-trivial for p = min{1/K, 1/H} if K 6= H . We refer to Section 2 of [40] for further discussions
and properties of the fractional Wiener–Weierstrass bridge.

Our results on the sample path properties of the process Y will also depend on the interplay
between the parameters H and K. The most interesting and challenging case is the critical phase
H = K, where we fully characterize the sample path properties through delicate analysis of the
covariance function. We start from the (Wiener–Young) Φ-variation, which for a real function f is
defined as

vΦ(f) = sup

{ n∑

i=1

Φ(|f(ti)− f(ti−1)|) : 0 = t0 < t1 < · · · < tn = 1, n ∈ N

}
.

Note that here the supremum is taken over all partitions of the interval [0, 1] and not just over a
specific refining sequence of partitions as for the pth variation studied in [40]. Our goal is to find a
critical function Φ such that vΦ(Y ) is non-trivial in the sense that P(0 < vΦ(Y ) <∞) = 1. Here and
in the sequel, L (resp. δ > 0) will denote a large (resp. small) number depending only on α, b,H and
which may vary at each occurrence. The function log log x is always interpreted as log log x∨ e, where
a ∨ b and a ∧ b denote the respective maximum and minimum of two real numbers a and b.

Theorem 2.2. Let Y be a fractional Wiener–Weierstrass bridge with parameters α, b, and H, and
K = min{1, (− logb α)}.

(i) If H < K,

P

(
1

L
< vΦ(Y ) <∞

)
= 1 for Φ(x) =

(
x√

2 log log(1/x)

)1/H

. (8)

(ii) If H = K,

P

(
1

L
< vΦ(Y ) <∞

)
= 1 for Φ(x) =

(
x√

2 log(1/x) log log(1/x)/H

)1/H

. (9)

(iii) If H > K,
P(0 < vΦ(Y ) <∞) = 1 for Φ(x) = x1/K .
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Moreover, in all three cases, if Θ : [0,∞) → [0,∞) is a function such that Φ(x) = o(Θ(x)) as x→ 0+,
then vΘ(Y ) = ∞ almost surely. Conversely, if Θ(x) = o(Φ(x)) as x → 0+, then vΘ(Y ) = 0 almost
surely.

Theorem 2.2 will follow from a more general result, Theorem 4.1 below, which extends Theorem
10.3.2 of [29] to the case of Gaussian processes with non-stationary increments. The concept of Φ-
variation plays an important role in rough path calculus; see, e.g., [11, 12], and the references therein.
The Φ-variation of various stochastic processes has been the subject of several earlier works: fractional
Brownian motion [9], bi-fractional Brownian motion [34], sub-fractional Brownian motion [37], more
general Gaussian processes with stationary increments [24], and certain non-Gaussian processes [3].
For fractional Brownian motion, a critical function Φ such that vΦ(WH) is non-trivial is given by
Φ(x) = x1/H(log log(1/x))−1/(2H), which coincides with the function Φ in part (i) of Theorem 2.2.

Our next results, Theorems 2.3 and 2.4, characterize the local and uniform moduli of continuity
for fractional Wiener–Weierstrass bridges. We will write R+ = (0,∞). Following Section 7.1 of [29],
we will say that a function ω : [0, 1) → [0,∞) with ω(0) = 0 is an exact uniform modulus of continuity
for a Gaussian process (G(t))t∈[0,1] if

P

(
lim
h→0

sup
t,s∈[0,1]
|t−s|<h

|G(t)−G(s)|
ω(|t− s|) = C

)
= 1

for some constant C ∈ R+. We say that a function ρ : [0, 1) → [0,∞) with ρ(0) = 0 is an exact local
modulus of continuity for (G(t))t∈[0,1] at s ∈ [0, 1] if

P

(
lim sup
t∈[0,1], t→s

|G(t)−G(s)|
ρ(|t− s|) = C ′

)
= 1

for some C ′ ∈ R+.

Theorem 2.3. Let Y be a fractional Wiener–Weierstrass bridge with parameters α, b, and H, and
K = min{1, (− logb α)}.

(i) If H < K, then ρ(u) = uH
√

log log(1/u) is an exact local modulus of continuity for Y at every
s ∈ [0, 1].

(ii) If H = K, then ρ(u) = uH
√
log(1/u) log log(1/u) is an exact local modulus of continuity for Y

at every s ∈ [0, 1].

(iii) If H > K, then there exist non-negative random variables Zs, s ∈ [0, 1], such that

P

(
lim sup
t∈[0,1], t→s

|Y (t)− Y (s)|
|t− s|K = Zs

)
= 1. (10)

Moreover, if κ is strictly increasing,1 the random variable Zs is non-constant, strictly positive,
and unbounded for almost every s ∈ [0, 1]. In particular, Y does not have an exact local modulus
of continuity at almost every s ∈ [0, 1].

Theorem 2.4. Let Y be a fractional Wiener–Weierstrass bridge with parameters α, b, and H, and
K = min{1, (− logb α)}.

1This is a technical assumption, which we expect can be removed.
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(i) If H < K, then ω(u) = uH
√

log(1/u) is an exact uniform modulus of continuity for Y .

(ii) If H = K, then ω(u) = uH log(1/u) is an exact uniform modulus of continuity for Y .

(iii) If H > K, then there exists a non-constant and unbounded random variable Z such that

P

(
lim
h→0

sup
t,s∈[0,1]
|t−s|<h

|Y (t)− Y (s)|
|t− s|K = Z

)
= 1. (11)

In particular, Y does not have an exact uniform modulus of continuity.

It is instructive to compare the moduli of continuity of Y with those of classical functions or
processes. First, if αb > 1, the classical Weierstrass function (1) admits local moduli ρ(u) = u− logb(α)

at all points (Theorem 1 of [20]), and hence the same uniform modulus. Second, the fractional
Brownian motionWH has an exact uniform modulus ω(u) = uH

√
log(1/u) and an exact local modulus

ρ(u) = uH
√

log log(1/u), as special cases of Theorems 7.2.14 and 7.6.4 of [29]. In other words, in
terms of moduli of continuity, the Wiener–Weierstrass process Y mimics the classical Weierstrass-type
functions if H > K and the fractional Brownian motion WH if H < K. Surprisingly, in the critical
case H = K, our modulus of continuity differs from that of the critical Weierstrass function (1) with
αb = 1. More precisely, [15] established that ρ(u) = uH

√
log(1/u) log log log(1/u) is an exact local

modulus of continuity for φ1/b,b at almost all points. More general results were later established in [8]
for (critical) Weierstrass-type functions.

Remark 2.5. The fact that Zs in (10) (or Z in (11)) is random does not contradict the well-known
zero-one law on the modulus of continuity of Gaussian processes (see Lemma 4.6 below). In fact, it
is an interesting example where the zero-one law fails. This is because for H > K the modulus of
continuity is not of a larger order than the L2-distance ‖Y (t)− Y (s)‖2 as |t− s| → 0.

Denote by dim(f) the Hausdorff dimension of the graph of a function f . For the Weierstrass
function in (1) (or Weierstrass-type functions in general), it was a long-standing conjecture that
dim(φα,b) = max{1, 2 −K}, until recently resolved in [38, 41]. On the other hand, for the fractional
Brownian motion we have dim(WH) = 2−H a.s. (Theorem 1 of [1]). The question extends naturally
to the fractional Wiener–Weierstrass bridge Y . According to the previous heuristic, it is expected
that dim(Y ) = max{2−H, 2−K} holds a.s. We give a partial answer in the next result.

Theorem 2.6. Let Y be a fractional Wiener–Weierstrass bridge with parameters α, b, and H, and
K = min{1, (− logb α)}. Suppose that K > 2H−1. Then dim(Y ) = max{2−H, 2−K} almost surely.

A crucial ingredient in analyzing the moduli of continuity and the Hausdorff dimension is esti-
mating the covariance of the fractional Wiener–Weierstrass bridge Y . Specifically, we need to prove
upper and lower bounds for ‖Y (t) − Y (s)‖2 for t, s ∈ [0, 1]. This non-trivial task will require two
technical tools: fractional integral representations and the strong local-nondeterminism property. We
will provide the necessary background on fractional integrals in Section 3.1.

The strong local non-determinism is a crucial property for establishing sample path properties of
Gaussian processes, such as uniform modulus of continuity [30], small ball probability, and Chung’s
law of the iterated logarithm [43], among many others. See [45, 46] for surveys. There are multiple
different definitions of local non-determinism for Gaussian processes, among which [5] and [36] contain
the earliest versions. One of the most widely used definitions is as follows: we say a Gaussian random
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field (X(t))t∈I indexed by I ⊆ RN is strongly locally ρ-non-deterministic if, for any n ∈ N and any
points u, t1, . . . , tn ∈ I,

Var
(
X(u) | X(t1), . . . , X(tn)

)
≥ 1

L
min
1≤k≤n

ρ(u, tk)
2, (12)

where ρ is some prefixed metric on RN and L > 0 depends only on the law of the process (X(t))t∈I .
For instance, one may take ρ(s, t) = |t− s|H for the fractional Brownian motion (Lemma 7.1 of [36]).
This property also holds for well-known Gaussian processes such as the fractional Brownian sheet [44]
and bi-fractional Brownian motion [43], with certain choices of ρ.

Finally, we study the location of the maximum of a fractional Wiener–Weierstrass bridge. Let
τα,b,H be the (random) location of the maximum of Yα,b,H, taking the leftmost point when the location
is not unique, that is,

τα,b,H := min
{
t ∈ [0, 1] : Yα,b,H(t) = sup

0≤s≤1
Yα,b,H(s)

}
.

Theorem 2.7. Let K = min{1, (− logb α)}. The distribution of τα,b,H is atomless if and only if
H ≤ K. Moreover, P(τα,b,H = 0) > 0 if H > K.

The study of the location of the maximum of (deterministic) fractal functions has extensive lit-
erature. To mention a few, there are [21] for the classical Takagi function, [13, 14, 32] for Takagi–
Landsberg functions, and [18] that characterizes the set of global maximizers and minimizers for
functions in the Takagi class.

Notations. We use ‖·‖2 to denote the L2(Ω)-norm of a generic random variable and ‖·‖Lp to denote
the Lp-norm of a measurable function in Lp(R), where p ≥ 1. Denote by #A the cardinality of a finite
set A, and |I| the Lebesgue measure of a set I ⊆ R. The set of non-negative integers is denoted by
N0 = N ∪ {0}.

Outlook and some open questions. We propose a few open questions and interesting directions
for future research.

1. Several proofs (such as that of Theorem 2.4(ii)) could be simplified, and further properties of the
fractional Wiener–Weierstrass bridges could perhaps be unveiled, if one can establish the strong
local non-determinism (12) for the Wiener–Weierstrass processes. However, this task appears non-
trivial due to the intricate dependence structure created by the fractal construction. We conjecture
that if H < K, then Y is strongly locally ρ-non-deterministic with ρ(s, t) = |s− t|H .

2. As mentioned above, our main results rely heavily on controlling the L2-distance ‖Y (t)− Y (s)‖2.
As we will see in Section 3.3, obtaining precise bounds of ‖Y (t) − Y (s)‖2 in the case H > K
remains a challenging task. On one hand, it is not hard to show that ‖Y (t)− Y (s)‖2 ≤ L|t− s|K
uniformly in s, t. On the other hand, a lower bound of the form

‖Y (t)− Y (s)‖2 ≥
1

L
|t− s|K (13)

cannot hold uniformly for s, t ∈ [0, 1], because otherwise it would contradict Lemma 7.1.10 of [29]
along with Theorem 2.3(iii). This motivates the following question: for which pairs (s, t) ∈ [0, 1]2

can we have a uniform lower bound (13)? Lemma 3.9 may serve as a first step by asserting that if
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K ∈ (2H − 1, H), there exist sets {TN}N≥1 with Hausdorff dimensions tending to one, such that
(13) holds uniformly for t, s ∈ TN , where L may depend on N . Extensions of such a result may
lead to a better understanding of the local modulus of continuity and the Hausdorff dimension; see
the point below.

3. We conjecture that for all α, b,H , it holds that dim(Y ) = max{2 − H, 2 − K} almost surely.
Moreover, we conjecture that the random variable Zs arising in Theorem 2.3(iii) is non-constant
and strictly positive for all s ∈ [0, 1]. For this problem, the case H ∈ (0, 1/2] should follow from the
Hardy–Littlewood inequality (Lemma 3.1 below), while the more challenging case is H ∈ (1/2, 1).
Both problems require further investigation of the quantity ‖Y (t)− Y (s)‖2, particularly the lower
bound.

3 Some preliminary estimates

An essential ingredient in proving the main results is estimating the covariance of the fractional
Wiener–Weierstrass bridge Y , or in other words, obtaining upper and lower bounds for ‖Y (t)−Y (s)‖2.
This will be the goal of the current section. We start with a minimal background on fractional integrals
and their connections to moments of fractional Wiener integrals.

3.1 Background on fractional integration

Let us recall from [31] that the Riemann–Liouville fractional integrals are defined as follows. For
β > 0,

Iβ+(f)(x) :=
1

Γ(β)

∫ x

−∞

f(t)(x− t)β−1dt and Iβ−(f)(x) :=
1

Γ(β)

∫ ∞

x

f(t)(t− x)β−1dt,

I0+(f)(x) := f(x), and for −1 < β < 0,

Iβ+(f)(x) :=
1

Γ(1 + β)

d

dx

∫ x

−∞

f(t)(x− t)βdt and Iβ−(f)(x) :=
−1

Γ(1 + β)

d

dx

∫ ∞

x

f(t)(t− x)βdt.

For H ∈ (0, 1), let β = H − 1/2 and define the linear operator

MH
± (f) := CHI

β
±(f),

where CH > 0 is chosen as in equation (1.3.3) of [31]. Then, if f is supported on [0,∞) and MH
− (f) ∈

L2(R), ∫ ∞

0

f(s) dWH(s) =

∫ ∞

0

MH
− (f)(s) dW1/2(s),

see Section 1.6 of [31]. Thus, by Itô’s isometry,

E

[∣∣∣
∫ ∞

0

f(s) dWH(s)
∣∣∣
2
]
=

∫ ∞

0

MH
− (f)(s)2ds =

∥∥∥MH
− (f)

∥∥∥
2

L2
. (14)

The following result, known as the Hardy–Littlewood inequality, provides useful upper and lower
bounds of (14).
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Lemma 3.1 (Corollary 1.9.2 of [31]). There exists L > 0 depending on H such that the following
holds. If H ∈ (0, 1/2],

E

[∣∣∣
∫ ∞

0

f(s) dWH(s)
∣∣∣
2
]
=
∥∥∥MH

− (f)
∥∥∥
2

L2
≥ 1

L
‖f‖2L1/H .

If H ∈ [1/2, 1),

E

[∣∣∣
∫ ∞

0

f(s) dWH(s)
∣∣∣
2
]
=
∥∥∥MH

− (f)
∥∥∥
2

L2
≤ L ‖f‖2L1/H .

3.2 A Hardy–Littlewood-type inequality for a sum of homogeneous in-

dicator functions

Our estimates of covariances in Section 3.3 rely on a novel refinement of Lemma 3.1 for fractional
integrals, which is of independent interest. It applies to a special case of step functions.

Definition 3.2. Let k ∈ N. An open subset of [0,∞) is a k-interval if it is a union of at most k
bounded open intervals.

The following theorem will later be applied with b ∈ {2, 3, . . . } as in Definition 2.1. However, the
theorem’s statement is also true if b is not an integer.

Theorem 3.3. Let H ∈ (0, 1), k ∈ N, α ∈ (0, 1), b = α−1/H , and {Im}m∈N0 be a collection of k-
intervals with |Im| = bm. Define

fm := αm
1Im and gM :=

M−1∑

m=0

fm. (15)

Then there exists L > 0, depending on k,H, α, b, such that for all M ∈ N,

M

L
≤
∥∥∥MH

− (gM)
∥∥∥
2

L2
≤ LM. (16)

Let us call a function fm as in (15) a homogeneous indicator function. Theorem 3.3 then states
that the L2-norm of a fractional integral of a sum of M positive homogeneous indicator functions is
of order M (up to multiplicative constants). We also remark here that if H ∈ (0, 1/2), the classical
Hardy–Littlewood inequality (Lemma 3.1) only gives the lower bound

∥∥∥MH
− (gM)

∥∥∥
2

L2
≥ 1

L
‖gM‖2L1/H . (17)

By Minkowski’s inequality, the right-hand side of (17) further has the upper bound ‖gM‖2
L1/H ≤M2H ,

which for large M is strictly dominated by our bound M/L. Hence (17) cannot be optimal. A similar
reasoning applies to H ∈ (1/2, 1). Therefore, unless H = 1/2, our result strengthens the classical
Hardy–Littlewood inequality for functions gM .

For the proof of Theorem 3.3, we focus first on the lower bound which appears less transparent
than the upper bound. The easy part of the lower bound of (16) is when H ≥ 1/2. Indeed, since the
increments of fractional Brownian motion are positively correlated for H ≥ 1/2, we have by (15) and
(14) that

∥∥∥MH
− (gM)

∥∥∥
2

L2
= E

[∣∣∣∣
∫ ∞

0

M−1∑

m=0

fm(s) dWH(s)

∣∣∣∣
2
]
≥

M−1∑

m=0

E

[∣∣∣∣
∫ ∞

0

fm(s) dWH(s)

∣∣∣∣
2
]
.
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Next, we write the k-interval Im as the disjoint union of open intervals J1, . . . , Jk (some of which may
be empty). At least one of these intervals say J1, must have length |Im|/k = bm/k. Hence, using again
the positive correlation of the increments of WH ,

E

[∣∣∣∣
∫ ∞

0

fm(s) dWH(s)

∣∣∣∣
2
]
≥ α2m

k∑

i=1

|Ji|2H ≥ α2mb2mHk−2H = k−2H .

Hence, the lower bound in (16) holds with L = k−2H .
Let us now turn to the case H ∈ (0, 1/2). To lighten the notation, we define the bilinear form

〈f, g〉 := E

[(∫ ∞

0

fdWH

)(∫ ∞

0

gdWH

)]

on the space of continuous functions with compact support in [0,∞).

Lemma 3.4. Let I ⊂ [0,∞) be a finite union of bounded open intervals, and h : [0,∞) → [0,∞) be a
nonnegative step function (with finitely many steps), vanishing on Ic = [0,∞) \ I. Then 〈1I , h〉 ≥ 0.

Proof. We proceed by induction on the number n of disjoint open intervals in I. Consider first when
I itself is an open interval. By linearity of the expectation, we may assume h = 1J is an indicator
function of a nonempty interval J ⊆ I. Let us denote I = (i1, i2) and J = (j1, j2). Then, by the
monotonicity of the function x 7→ x2H ,

〈1I ,1J〉 =
1

2
(|j2 − i1|2H + |i2 − j1|2H − |j1 − i1|2H − |i2 − j2|2H) ≥ 0.

Next, we assume that the claim holds for n and suppose that I is the disjoint union of n+1 nonempty
bounded open intervals, denoted by I1, . . . , In+1. We assume that In+1 = (in+1, in+2) is the rightmost
intervals so that sup I = in+2. We furthermore denote in := sup I \ In+1 ≤ in+1. By the linearity of
the expectation, we may assume without loss of generality that h is the indicator function of some
interval J that is contained within some Ik. By symmetry and considering the case k = 1, we may
assume that k ≤ n. Note then that g := 1I = g1 + g2, where g1 = 1(in+1,in+2), g2 = 1I\In+1 . We also
define

g̃1(x) := g1(x+ in+1 − in), g̃ = g̃1 + g2.

By concavity of the function x 7→ x2H , 〈g1, h〉 ≥ 〈g̃1, h〉. This gives

〈g, h〉 = 〈g1, h〉+ 〈g2, h〉 ≥ 〈g̃1, h〉+ 〈g2, h〉 = 〈g̃, h〉 ,

which is nonnegative by the induction hypothesis and noting that g̃ is an indicator function of an
n-interval (modulo a finite collection of points, which does not change the value of 〈g̃, h〉).

Lemma 3.5. Let 0 < H < 1/2 and h : [0,∞) → [0,∞) be a nonnegative step function whose support
is I, which is a finite union of bounded open intervals. Denote by

h∗ := min h(I) = min(h([0,∞)) \ {0}). (18)

Then for all δ ≤ h∗,

E

[∣∣∣
∫

I

hdWH

∣∣∣
2
]
≥ δ2|I|2H

L
+ E

[∣∣∣
∫

I

(h− δ)dWH

∣∣∣
2
]
. (19)
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Proof. Write I as a disjoint union of bounded open intervals I = I1 ∪ I2 ∪ · · · ∪ In. Denote by hj the
restriction of h on Ij , and δj = δ1Ij , so by assumption gj := hj − δj ≥ 0. Thus

〈h, h〉 =
〈

N∑

j=1

gj,
N∑

j=1

gj

〉
+

〈
N∑

j=1

δj ,
N∑

j=1

δj

〉
+ 2

N∑

i=1

N∑

j=1

〈
gi, δj

〉
.

By Lemma 3.1 and concavity of the function x 7→ x2H , we have

〈
N∑

j=1

δj ,

N∑

j=1

δj

〉
≥ δ2

L

N∑

j=1

|Ij|2H ≥ δ2|I|2H
L

.

Thus we conclude by Lemma 3.4 that

〈h, h〉 ≥ δ2|I|2H
L

+

〈
N∑

j=1

gj,
N∑

j=1

gj

〉
.

Since
∑N

j=1 gj = (h− δ)1I , we obtain (19).

We will repeatedly apply Lemma 3.5 to bound E
[
|
∫∞

0
gMdWH |2

]
from below, and show that the

contributions of the form δ2|I|2H/L give the desired lower bound. One must show that h∗ is large
enough at some point in our procedure. This is formulated in the next result.

Lemma 3.6. Let M ∈ N be arbitrary and recall (15). Define SM := gM(R) ⊆ [0,∞). Then there is
L > 0 depending only on α, k,2 but not on M,m, such that for all m < M , (αm+1, αm) \ SM contains
an open interval of length αm/L.

Proof. Let us choose L1 ∈ N large with

3kL1α
L1

1− α
<

1− α

2
, (20)

which is possible since α ∈ (0, 1). Since each Ij is a k-interval, the function gL1 changes value at most
2k(L1+1) times by the definition (15), showing that #gL1(R) ≤ 2k(L1+1) < 3kL1. Therefore, we may
assume without loss of generality thatM > L1, because #gℓ(R) < 3kL1 for each ℓ ≤ L1, in which case
the statement can be accommodated by increasing L, once the assertion is established for M > L1.
For M > L1, we consider a non-negative integer m < M − L1 and a number τ ∈ (αm+1, αm) ∩ SM .
Then by (15),

τ =

M−1∑

j=m

εjα
j, where εj ∈ {0, 1}.

We define Tm,L1 to be the collection of all vectors (εm, . . . , εm+L1). Since #gL1(R) < 3kL1, #Tm,L1 ≤
3kL1. Write {t1, . . . , tℓ} for the set of numbers that can be represented as

∑m+L1

j=m εjα
j for some

(εm, . . . , εm+L1) ∈ Tm,L1 . Since
∑∞

i=L1+1 α
i = αL1+1/(1− α),

τ ∈
ℓ⋃

j=1

[
tj , tj +

∞∑

i=m+L1+1

αi

]
=

ℓ⋃

j=1

[
tj , tj +

αm+L1+1

1− α

]
. (21)

2Recall that each Im is a k-interval.
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By (20) and since ℓ ≤ 3kL1,

∣∣∣∣
ℓ⋃

j=1

[
tj, tj +

αm+L1+1

1− α

]∣∣∣∣ ≤
3kL1α

m+L1+1

1− α
<
αm(α− α2)

2
,

which means that for L = 6kL1/(α− α2) there must be an interval3 of length αm/L, which is a subset
of

(αm+1, αm) \ SM ⊇ (αm+1, αm) \
3kL1⋃

j=1

[
tj , tj +

αL1+1

1− α

]
.

This completes the proof for m < M − L1. But since M is arbitrary and L is independent of M , the
case M − L1 ≤ m < M follows simply by enlarging M and proceeding with the same proof.

Proof of Theorem 3.3. The lower bound only needs to be proved for H < 1/2. The idea is to repeat-
edly apply Lemma 3.5, “shrink” the function gM at each step, and extract factors δ2|I|2H/L ≥ 1/L.
Denote by L2 the constant in Lemma 3.6. For 0 ≤ i ≤M − 1, define the shrunk functions of gM as

g
(i)
M := (gM − αM−i)+,

which intuitively corresponds to the function h − δ in Lemma 3.5 after applying this lemma several
times. Intuitively, this separates the contributions for different i using the thresholds αM−i−1 and
αM−i. By (15), clearly we have |g−1

M (αM−i,∞)| ≥ bM−i−1, which implies

|supp g(i)M | ≥ bM−i−1. (22)

Let us denote the points in SM∩(αM−i−1, αM−i) by s
(i,1)
M < · · · < s

(i,NM−i)
M , S

(i,0)
M := αM−i−1, S

(i,NM−i+1)
M :=

αM−i, and the truncated functions g
(i,j)
M := (gM − s

(i,j)
M )+. By Lemma 3.5, for all 1 ≤ j ≤ NM−i + 1,

〈
g
(i,j−1)
M , g

(i,j−1)
M

〉
≥
〈
g
(i,j)
M , g

(i,j)
M

〉
+

1

L

(
s
(i,j)
M − s

(i,j−1)
M

)2
|supp g(i,j−1)

M |2H .

Also by Lemma 3.6, there exists 1 ≤ j0 ≤ NM−i + 1 such that s
(i,j0)
M − s

(i,j0−1)
M ≥ αM−i−1/L2, so that

by (22) and the relation αbH = 1,

〈
g
(i)
M , g

(i)
M

〉
≥ 1

L

(αM−i−1

L2

)2
|supp g(i)M |2H +

〈
g
(i+1)
M , g

(i+1)
M

〉
≥ 1

L
+
〈
g
(i+1)
M , g

(i+1)
M

〉
.

Summation over 0 ≤ i ≤M − 1 yields that

∥∥∥MH
− (gM)

∥∥∥
2

L2
= E

[∣∣∣
∫ ∞

0

gMdWH

∣∣∣
2
]
≥ E

[∣∣∣
∫ ∞

0

g
(0)
M dWH

∣∣∣
2
]
≥

M−1∑

i=0

1

L
=
M

L
.

This proves the lower bound.
Consider now the upper bound. Using the identity

∥∥∥MH
− (gM)

∥∥∥
2

L2
= E

[∣∣∣
∫ ∞

0

gMdWH

∣∣∣
2
]
= E




∣∣∣
M−1∑

m=0

∫ ∞

0

fmdWH

∣∣∣
2



 =

M−1∑

m=0

M−1∑

k=0

〈fm, fk〉 , (23)

3The location of such an interval may depend on TL1
, but the existence does not.
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it suffices to bound the right-hand side of (23) from above. We use induction on M . The base case is
obvious, i.e., 〈f0, f0〉 ≤ L. Consider for 1 ≤ n ≤M − 1,

n∑

m=0

n∑

k=0

〈fm, fk〉 −
n−1∑

m=0

n−1∑

k=0

〈fm, fk〉 = 〈fn, fn〉+ 2
n−1∑

m=0

〈fn, fm〉 ≤ L+ L
n−1∑

m=0

αm+n 〈1Im,1In〉 .

If 0 < H ≤ 1/2, then 〈1Im,1In〉 ≤ b2mH due to the negativity of correlations. If H > 1/2, by
mean-value theorem, 〈1Im ,1In〉 ≤ Lbmbn(2H−1). In either case, one easily checks that

n∑

m=0

n∑

k=0

〈fm, fk〉 −
n−1∑

m=0

n−1∑

k=0

〈fm, fk〉 ≤ L,

where L depends only on α, b. Summing over this relation completes the proof.

3.3 Covariance estimates

In the following results, the notation 1[c,d] means −1[d,c] if d < c. Recall (5) and (6).

Lemma 3.7. Let Y be the Wiener–Weierstrass process with H < K, then there exists L > 0 such
that for all s, t ∈ [0, 1] satisfying |s− t| ≤ b−L,

1

L
|t− s|2H ≤ E[|Y (t)− Y (s)|2] ≤ L|t− s|2H .

In particular, Y is a quasi-helix in the sense of [22, 23].

Proof. The upper bound is straightforward by Minkowski’s inequality and (5), so we focus on the
lower bound. Fix α ∈ (0, 1) and b ∈ {2, 3, . . . } with H ≤ K. We consider a large number L3 to be
determined and we choose L ∈ N such that

∞∑

m=L

αm <
1

L3

, (24)

and




αL

αbτ−1
< 1

L3
if αbτ > 1;

∀N ≥ L, Nb−τN < 1
L3

if αbτ = 1;
b−τL

1−αbτ
< 1

L3
if αbτ < 1,

(25)

and for all δ < b−L,




L3δ
H+1 < δ2H if αbτ > 1;

L3

(
δH+1 − δ2 log δ

)
< δ2H if αbτ = 1;

L3

(
δH+1 + δ2

)
< δ2H if αbτ < 1.

(26)

Fix 0 ≤ s ≤ t ≤ 1 with b−M−1 < t− s ≤ b−M so that M ≥ L. Observe that

Y (t)− Y (s) =
∞∑

m=0

αm(BH({bmt})− BH({bms}))

=

∞∑

m=0

αm(WH({bmt})−WH({bms})− (κ({bmt})− κ({bms}))WH(1)) =

∫ 1

0

g(x) dWH(x)
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as a Wiener integral, where

g(x) :=
∞∑

m=0

αm
1[{bms},{bmt}](x)−

∞∑

m=0

αm(κ({bmt})− κ({bms})). (27)

This integral is well-defined using Lemma 3.1 of [40]. Define

ℓ := inf{1 ≤ k ≤M − 1 : {bks} > {bkt}} ∧M. (28)

We claim that for 0 ≤ k < ℓ,

0 ≤ {bks} < {bkt} < 1 and {bkt} − {bks} = bkt− bks ≤ bk−M , (29)

and for ℓ ≤ k < M (since t− s < b−M),

0 ≤ {bkt} < {bks} < 1 and {bks} − {bkt} = 1− (bkt− bks) ≥ 1− bk−M . (30)

Indeed, bℓt − bℓs ≤ bℓ−M < 1 implies {bkt} + (1 − {bks}) ≤ bℓ−M and for k ∈ [ℓ,M), we have
{bkt} = bk−ℓ{bkt} ≤ b−1 and 1 − {bks} = bk−ℓ(1 − {bks}) ≤ b−1. Therefore, {bkt} < {bks}, i.e., the
order of {bkt} and {bks} flips at most once for 0 ≤ k < M (i.e., if k = ℓ) and after they flip, one of
them is very close to 0 and the other very close to 1, with the distances proportional to bk.

Let us write g(x) =
∑3

i=1 gi(x) where





g1(x) :=
ℓ−1∑

m=0

αm
1[{bms},{bmt}](x) +

M−1∑

m=ℓ

αm
1[0,{bmt}]∪[{bms},1](x);

g2(x) := −
ℓ−1∑

m=0

αm(κ({bmt})− κ({bms}))−
M−1∑

m=ℓ

αm
(
1− (κ({bms})− κ({bmt}))

)
;

g3(x) :=

∞∑

m=M

αm
1[{bms},{bmt}](x)−

∞∑

m=M

αm(κ({bmt})− κ({bms})).

(31)

Note that g2(x) does not depend on x.
Let x ∈ [s, t], then g1(x) ≥ 1. We also have

g3(x) ≥ −(1 + 2 sup |κ|)
∞∑

m=M

αm =: −K1(M).

By (30), for ℓ ≤ k < M , {bks} − {bkt} ≥ 1− bk−M , so that by Hölder continuity of κ,

g2(x) ≥ −
M−1∑

m=ℓ

αm({bmt}τ + (1− {bms})τ )−
ℓ−1∑

m=0

αm(bm(t− s))τ

≥ −2b−Mτ
M−1∑

m=0

(αbτ )m

≥





−2(αbτ − 1)−1αM if αbτ > 1

−2Mb−τM if αbτ = 1

−2(1− αbτ )−1b−τM if αbτ < 1

=: −K2(M).
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Therefore by (24) and (25), and since M ≥ L, if L3 is large,

g(x) ≥ 1 + g2(x) + g3(x) ≥ 1− (K1(M) +K2(M)) ≥ 1

2
. (32)

Also by (26) and since α ≤ b−H , if L3 is large,

K1(M) +K2(M) ≤ 1

2H
|t− s|2H−1. (33)

Consider first the case 0 < H < 1/2. By Lemma 3.1,

E[|Y (t)− Y (s)|2] ≥ 1

L
‖g‖2L1/H ≥ 1

L

(∫ t

s

g(x)1/Hdx

)2H

≥ 1

L
|t− s|2H ,

as required. Now let us assume that 1/2 ≤ H < 1. Expanding the square, we have

E(|Y (t)− Y (s)|2) = E

[∣∣∣
∫ 1

0

(
g − 1[s,t]

)
dWH

∣∣∣
2
]
+ E[|WH(t)−WH(s)|2]

+ 2E

[
(WH(t)−WH(s))

(∫ 1

0

(
g − 1[s,t]

)
dWH

)]

≥ E[|WH(t)−WH(s)|2] + 2E
[
(WH(t)−WH(s))

(
−(K1(M) +K2(M))WH(1)

)]

= |t− s|2H − 2(K1(M) +K2(M))E[(WH(t)−WH(s))WH(1)],

where the second step is because WH has non-negatively correlated increments for H ≥ 1/2 and (32).
By the mean-value theorem and since x 7→ x2H is convex,

E[(WH(t)−WH(s))WH(1)] ≤ H|t− s|.

Thus by (33),

E[|Y (t)− Y (s)|2] ≥ |t− s|2H −H|t− s|(K1(M) +K2(M)) ≥ 1

2
|t− s|2H .

This finishes the proof for H ≥ 1/2.

Observe that we only picked the interval [s, t] when estimating g1(x) from below, while ignoring
the other contributions from {[bms, bmt] : m = 1, . . . , L − 1}. When taking care of this and other
possible contributions, a more refined argument can provide a more precise estimate in the case of
H = K.

Lemma 3.8. Let Y be the Wiener–Weierstrass process with H = K, then there exists L > 0 such
that for all s, t ∈ [0, 1] with |s− t| ≤ b−L,

1

L
|t− s|2H log

( 1

|t− s|
)
≤ E[|Y (t)− Y (s)|2] ≤ L|t− s|2H log

( 1

|t− s|
)
.

In particular, Y is a quasi-helix.
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Proof. Consider a large number L and 0 ≤ s ≤ t ≤ 1, |s− t| ≤ b−L. Choose M such that b−M−1 <

t − s ≤ b−M . Recall from the proof of Lemma 3.7 that Y (t) − Y (s) =
∫ 1

0
g(x) dWH(x), where g is

defined in (27). Define ℓ as in (28) and recall (31). Using Minkowski’s inequality we will show that
the contribution from g1 is of the right order and that from g2, g3 are negligible. Let us consider first
1/2 ≤ H < 1 so that the increments are positively correlated, which yields that

E

[∣∣∣
∫ 1

0

g1dWH

∣∣∣
2
]

≥
ℓ−1∑

m=0

E[α2m(WH({bmt})−WH({bms}))2] +
M−1∑

m=ℓ

E[α2m(WH({bmt}) +WH(1)−WH({bms}))2]

≥
ℓ−1∑

m=0

α2mb2mH |t− s|2H +
1

L

M−1∑

m=ℓ

α2mb2mH |t− s|2H ≥ 1

L
|t− s|2HM

≥ 1

L
|t− s|2H(− log |t− s|),

where the second inequality follows from the fact that

E[(WH({bmt}) +WH(1)−WH({bms}))2] ≥ max
{
E[WH({bmt})2],E[(WH(1)−WH({bms}))2]

}

≥
(
bm|t− s|

2

)2H

.

On the other hand, to give the upper bound, we further decompose g1(x) =
∑3

i=1 g1,i(x) where



g1,1(x) :=

ℓ−1∑

m=0

αm
1[{bms},{bmt}](x);

g1,2(x) :=
M−1∑

m=ℓ

αm
1[0,{bmt}](x);

g1,3(x) :=

M−1∑

m=ℓ

αm
1[{bms},1](x).

(34)

By expanding the square, the mean-value theorem, and since x 7→ x2H is convex, we have

E

[∣∣∣
∫ 1

0

g1,1dWH

∣∣∣
2
]

=
ℓ−1∑

m=0

E[α2m(WH({bmt})−WH({bms}))2]

+ 2
∑

0≤m<k<ℓ

E[αm+k(WH({bmt})−WH({bms}))(WH({bkt})−WH({bks}))]

≤ ℓ|t− s|2H + L
∑

0≤m<k<ℓ

αm+k(bm|t− s|)(bk|t− s|)(2H−1) ≤ LM |t − s|2H

≤ L|t− s|2H(− log |t− s|).
Similar arguments apply for g1,2, g1,3. Therefore, by Minkowski’s inequality,

∥∥∥∥
∫ 1

0

g1dWH

∥∥∥∥
2

≤
3∑

i=1

∥∥∥∥
∫ 1

0

g1,idWH

∥∥∥∥
2

≤ L|t− s|H
√
− log |t− s|.
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Hence we conclude that

1

L
|t− s|2H(− log |t− s|) ≤ E

[∣∣∣
∫ 1

0

g1dWH

∣∣∣
2
]
≤ L|t− s|2H(− log |t− s|).

That is,
1

L
|t− s|H

√
− log |t− s| ≤

∥∥∥∥
∫ 1

0

g1dWH

∥∥∥∥
2

≤ L|t− s|H
√

− log |t− s|

We also have by Minkowski’s inequality, (29), and (30),

∥∥∥∥
∫ 1

0

g2dWH

∥∥∥∥
2

= |g2| ≤ |K2(M)| ≤ L|t− s|H ,

where K2(M) is as in the proof of Lemma 3.7 and

∥∥∥∥
∫ 1

0

g3dWH

∥∥∥∥
2

≤
∞∑

m=M

αm
(∥∥WH({bmt})−WH({bms})

∥∥
2
+ |κ({bmt})− κ({bms})|

)
≤ LαM = L|t−s|H .

Applying again Minkowski’s inequality yields that for |t− s| < b−L and L large enough,

1

L
|t− s|2H(− log |t− s|) ≤ E

[∣∣∣
∫ 1

0

gdWH

∣∣∣
2
]
≤ L|t− s|2H(− log |t− s|).

This concludes the case H ≥ 1/2.
Now we consider the case 0 < H < 1/2. Recall (31) and (34). Following the case H ≥ 1/2, it

suffices to show

1

L
|t− s|2H(− log |t− s|) ≤ E

[∣∣∣
∫ 1

0

g1dWH

∣∣∣
2
]
≤ L|t− s|2H(− log |t− s|).

The lower bound now follows from Theorem 3.3 (applied with k = 2) since b−M−1 < t − s ≤ b−M .
The upper bound follows similarly as before, which we sketch below: recalling (34), we have

E

[∣∣∣
∫ 1

0

g1,1dWH

∣∣∣
2
]

=
ℓ−1∑

m=0

E[α2m(WH({bmt})−WH({bms}))2]

+ 2
∑

0≤m<k<ℓ

E[αm+k(WH({bmt})−WH({bms}))(WH({bkt})−WH({bks}))]

≤ ℓ|t− s|2H + L
∑

0≤m<k<ℓ

αm+k(bm|t− s|)2H

≤ L|t− s|2H(− log |t− s|),

and the rest follows line by line as in the case H ≥ 1/2.

The following result will be useful in deriving the Hausdorff dimension of the graph of fractional
Wiener–Weierstrass bridges.
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Lemma 3.9. Fix N ∈ N and suppose that K ∈ (2H − 1, H). Define

TN := {x ∈ [0, 1] : for all k ∈ N0, {bkx} ∈ [b−N , 1− b−N ]}. (35)

Then for all t, s ∈ TN with |t− s| < b−L,

E[|Y (t)− Y (s)|2] ≥ 1

L
|t− s|2K .

Here, L may depend on N .

Proof. We fix t, s ∈ TN and M ∈ N0 with b−M−1 < t − s ≤ b−M , where M > N is large and will be
determined later. The central fact used here is {bms} < {bmt} for 0 ≤ m < M −N , because otherwise
{bmt}+ 1−{bms} = |t− s|bm ≤ bm−M < b−N , contradicting {bms}, {bmt} ∈ [b−N , 1− b−N ]. Note also
that for 0 ≤ m < M −N , {bmt} − {bms} = |t− s|bm.

Recall from the proof of Lemma 3.7 that Y (t)− Y (s) =
∫ 1

0
g(x) dWH(x) where

g(x) :=
∞∑

m=0

αm
1[{bms},{bmt}](x)−

∞∑

m=0

αm(κ({bmt})− κ({bms})).

First,

∣∣∣∣∣

∞∑

m=0

αm(κ({bmt})− κ({bms}))
∣∣∣∣∣ ≤ L

M−N−1∑

m=0

αm(bm|t− s|)H + L

∞∑

m=M−N

αm ≤ L|t− s|− logb(α).

Similarly, ∣∣∣∣
∞∑

m=M−N

αm
1[{bms},{bmt}](x)

∣∣∣∣ ≤ L|t− s|− logb(α).

Here, L depends on κ, α, and N , but not on M . Thus there exists L4 > N such that

2

∣∣∣∣−
∞∑

m=0

αm(κ({bmt})− κ({bms})) +
∞∑

m=M−N

αm
1[{bms},{bmt}](x)

∣∣∣∣ ≤ αM−L4.

Since L4 does not depend on M , we may choose M so that M > L4. Then, for 0 ≤ m ≤M −L4 and
x ∈ [{bms}, {bmt}],

g(x) ≥
M−L4∑

k=0

αk
1[{bks},{bkt}](x)−

1

2
αm ≥ 1

2
αm.

Let us consider first the case 0 < H < 1/2. By Lemma 3.1 and our previous observation that
{bM−L4t} − {bM−L4s} = bM−L4 |t− s|,

E[|Y (t)− Y (s)|2] ≥ 1

L

(∫ 1

0

g1/H dx

)2H

≥ 1

L

(
bM−L4 |t− s|

(
αm

2

)1/H
)2H

≥ 1

L
|t− s|−2 logb(α).

Now we consider the case 1/2 ≤ H < 1, where we suppose that αb2H−1 < 1. Consider a large number
L5 > L4 to be determined, and let

h(x) := g(x)− 1

2
αM−L5

1[{bM−L5s},{bM−L5 t}](x).

18



Therefore, by expanding the square,

E

[(∫ 1

0

gdWH

)2]

≥ E

[(∫ 1

0

1

2
αM−L5

1[{bM−L5s},{bM−L5 t}]dWH

)2]

− E

[(∫ 1

0

αM−L5
1[{bM−L5s},{bM−L5 t}]dWH

)(∫ 1

0

hdWH

)]

≥ 1

L
α2M−2L5b2(M−L5)H |t− s|2H − αM−L5 sup |h|E[WH(1)(WH({bM−L5t})−WH({bM−L5s}))]

≥ 1

L
α2M−2L5b−2L5H − Lα2M−L5b−L5 ,

where in the second inequality we used that the increments of WH are positively correlated. Since
αb2H−1 < 1, for L5 large enough we have α−2L5b−2L5H > Lα−L5b−L5 , which yields that

E

[(∫ 1

0

gdWH

)2]
≥ 1

L
α2M =

1

L
|t− s|2K .

This finishes the proof.

4 Proofs of the main results

In this section, we prove Theorem 2.2 in Section 4.1, Theorems 2.4, 2.3, and 2.6 in Section 4.2, and
finally Theorem 2.7 in Section 4.3.

4.1 Φ-variation

We first prove a general result for the Φ-variation of Gaussian processes, extending Theorem 4 of [24]
to processes with non-stationary increments. A corresponding but informal discussion was initiated
in Section 10.6 of [29], while no proofs or precise statements were given. Here, we provide a formal
theorem with a detailed proof that requires weaker conditions on the covariance structure.

Theorem 4.1. Consider a centered Gaussian process (X(t))t∈[0,1] with

1

L
σ(|h|) ≤

∥∥X(t+ h)−X(t)
∥∥
2
≤ Lσ(|h|) (36)

for all t, t + h ∈ [0, 1], where σ is concave and regularly varying at 0 with index H ∈ (0, 1). Suppose
Ψ(x) := σ(x)(log log(1/x))1/2 is strictly increasing and denote by Φ its inverse, then

P

(
1

L
< vΦ(X) <∞

)
= 1

for this choice of Φ.

We first apply the result to prove Theorem 2.2. In reality, it is difficult to write down explicit
formulas of Φ given σ, but the essential point of Φ = Ψ−1 is to make the following equation (37) hold.
By Proposition 1.5.15 of [6], Φ is regularly varying with index 1/H at 0. Hence, for any c > 0,

lim
v→0

Φ(cΨ(v))

v
= lim

v→0

Φ(cΨ(v))

Φ(Ψ(v))
= c1/H . (37)

In the proof of Theorem 4.1, we will only apply Φ = Ψ−1 indirectly through (37).
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Proof of Theorem 2.2. Let us first consider the case H > K. By Proposition A.1 of [40], the sample
paths of Y are Hölder with exponent K, and so vΦ(Y ) <∞ a.s. On the other hand, Theorem 2.3(a)
of [40] implies that vΦ(Y ) > 0 a.s. This proves (iii) of Theorem 2.2.

Now we turn to parts (i) and (ii). Given the covariance estimates in Section 3.3 and by chopping
[0, 1] into intervals of length < b−L (because the estimates in Lemma 3.7 and Lemma 3.8 apply only
for |s− t| < b−L), it suffices to prove (37) in the cases H ≤ K with our choices of Φ from (8) and (9).
For H < K we may refer to (12.42) of [9]. The case H = K is settled by a direct computation:

lim
v→0

ΦH(cΨH(v))

v

= lim
v→0




c
√

2v2H log(1/v) log log(1/v)√
−2 log(c

√
2v2H log(1/v) log log(1/v)) log(− log(c

√
2v2H log(1/v) log log(1/v)))/H




1/H

v−1

= c1/H lim
v→0

(
2 log(1/v) log log(1/v)

−2 log(c
√

2v2H log(1/v) log log(1/v)) log(− log(c
√

2v2H log(1/v) log log(1/v)))/H

)1/2H

= c1/H lim
v→0

( −2 log(v) log(− log v)

−2 log(vH) log(− log(vH))/H

)1/2H

= c1/H .

This completes the proof.

Theorem 4.1 is a consequence of Corollary 4.3 below, by following the proof of Corollary 12.23 in
[9]. For a partition κ = {0 = t0 < t1 < · · · < tn = 1} of [0, 1], we denote its mesh by |κ| and define

sΦ(f, κ) :=
n∑

i=1

Φ(|f(ti)− f(ti−1)|).

In the following, consider a Gaussian process X satisfying the conditions in Theorem 4.1.

Theorem 4.2. Under the above conditions,

P

(
1

L
≤ lim

δ→0
sup{sΦ(X, κ) : |κ| < δ} ≤ L

)
= 1.

Corollary 4.3. There exists a constant C ∈ (0,∞) such that

P

(
lim
δ→0

sup{sΦ(X, κ) : |κ| < δ} = C

)
= 1.

Proof. This follows from Theorem 1 of [24].

The proof of Theorem 4.2 will follow the same path as Theorem 12.22 of [9]. Let us first present
some preparatory lemmas. In the statement of these lemmas, we impose the same assumptions as
Theorem 4.1.

Lemma 4.4. For all y > 1 and all 0 ≤ h < h+ δ ≤ 1,

P

(
sup

s,t∈[h,h+δ]

|X(s)−X(t)| > Lyσ(δ)

)
≤ L(1 + L−1)−y2.
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Proof. Let us first compute E
[
supt∈[h,h+δ]X(t)

]
. Since Ψ is regularly varying, there is α > 0 such

that for k large enough, Ψ(2−k−1) ≤ 2−αΨ(2−k). If δ ∈ [2−N , 2−N+1), we have for N large enough,
since Ψ(x) = σ(x)

√
log log(1/x) is non-decreasing,

∞∑

n=0

2n/2

(
σ(δ2−2n)

σ(δ)

)
≤

∞∑

n=0

2n/2

(
Ψ(2−N+1−2n)

√
logN

Ψ(2−N)
√

log(N + 2n − 1)

)
≤

∞∑

n=0

2n/22α(1−2n) ≤ L.

By (36) and Dudley’s entropy bound (Proposition 2.5.1 of [42]),

E

[
sup

t∈[h,h+δ]

X(t)

]
≤ L

∞∑

n=0

2n/2σ(δ2−2n) ≤ Lσ(δ).

Lemma 2.2.1 of [42] and the fact that X is symmetric yield that

E

[
sup

s,t∈[h,h+δ]

|X(s)−X(t)|
]
≤ Lσ(δ).

Thus by the Gaussian concentration inequality (Theorem 5.4.3 and Corollary 5.4.5 of [29] applied to
a dense subset of [h, h+ δ]), since y > 1,

P

(
sup

s,t∈[h,h+δ]

(X(s)−X(t)) > Lyσ(δ)

)

≤ P

(∣∣∣ sup
s,t∈[h,h+δ]

(X(s)−X(t))− E

[
sup

s,t∈[h,h+δ]

(X(s)−X(t))
]∣∣∣ >

1

2
Lyσ(δ)

)

≤ L exp

(
−(1

2
Lyσ(δ))2

L sups,t∈[h,h+δ]E[|X(t)−X(s)|2]

)

≤ L(1 + L−1)−y2 ,

as required, where the last step follows from (36). This proves the lemma while noting that the
absolute value on X(s)−X(t) can be removed by symmetry.

Lemma 4.5. There exist constants C(s) ∈ [ 1
L
, L], s ∈ [0, 1] such that

P

(
lim sup
t∈[0,1], t→s

|X(t)−X(s)|
Ψ(|t− s|) = C(s)

)
= 1. (38)

In addition,

P

(
lim sup

δ→0
sup

|t−s|<δ

|X(t)−X(s)|
Ψ̃(|t− s|)

≤ L

)
= 1, (39)

where Ψ̃(x) = σ(x)
√
− log x.

Proof. The proof of (38) is essentially the same as that of Theorem 2.3 below and hence omitted.
Note that C(s) ∈ [ 1

L
, L], otherwise it would contradict Lemma 7.1.10 of [29] with the choice Y (t) =

L±2X(t+(s′−s)), where L is as in (36). The claim (39) follows from (36), Theorem 7.2.1 and Lemma
7.2.5 in [29].
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Proof of Theorem 4.2. Consider first the lower bound. Denote by L6 the constant in Lemma 4.5 so
that C(s) ≥ 1/L6 for all s. Let ε ∈ (0, 1) be arbitrary,4 and

E(δ) :=

{
(t, ω) : ∃s ∈ (0, δ) ∩Q, Φ(|X(t+ s, ω)−X(t, ω)|) > (1− ε)s

L
1/H
6

}
. (40)

Taking c = L−1
6 in (37) yields that there is δ such that for all 0 < s < δ,

Φ

(
Ψ(s)

L6

)
≥ (1− ε)s

L
1/H
6

.

Since Φ is increasing, (38) yields that for each t ∈ (0, 1) the t-section Et(δ) of E(δ) is such that
P(Et(δ)) = 1. It follows from Fubini’s theorem that P(|Eδ| = 1) = 1. Observe that the set of intervals
[t, t+ s] with t ∈ [0, 1] and s as in (40) form a Vitali covering of

E :=
⋂

0<δ≤1

E(δ) =
∞⋂

k=1

E(1/k).

By Vitali’s covering theorem (e.g., Theorem 1 in §8 of Chapter III in [33]), we may choose a finite
subcollection of disjoint intervals {[t′j , t′j+sj]} with a total length of at least 1−ε. Then for a partition
κ with mesh |κ| < δ,

sΦ(X, κ) ≥
∑

j

Φ(|X(t′j + sj , ω)−X(t′j, ω)|) ≥
1− ε

L
1/H
6

∑

j

sj ≥
(1− ε)2

L
1/H
6

≥ 1

L
.

Let us now focus on the upper bound. For any partition κ = {ti}ni=0 of [0, T ], let ∆i = ti − ti−1

and ∆iX := X(ti) − X(ti−1) for 1 ≤ i ≤ n. Let I1, I2 be sets of i ∈ {1, . . . , n} such that |∆iX|
is respectively in [0, L7Ψ(∆i)] and [L7Ψ(∆i),∞). The constant L7 will be determined later. For
any c, ε > 0 there is η(c, ε) > 0 such that for all v ∈ (0, η(c, ε)), Φ(cΨ(v)) ≤ (c1/H + ε)v. Choose
δ1 = η(L7 + ε, ε), so for any partition κ with |κ| < δ1,

∑

i∈I1

Φ(|∆iX|) ≤
∑

i∈I1

Φ(L7Ψ(∆i)) ≤ (L7 + ε)1/H
∑

i∈I1

∆i ≤ L. (41)

To estimate the sum over I2, let Sm,j = [(j/2)e−m, (1 + j/2)e−m] and

Vm,j :=

{
ω ∈ Ω : sup

s,t∈Sm,j

|X(t, ω)−X(s, ω)| ≥ L7Ψ(e−m−2)

}
.

Let jm = ⌊2em⌋ − 1. We have

#Λm := #{i ∈ I2 : e
−m−1 < 2∆i ≤ e−m} ≤ 5#{0 ≤ j ≤ jm : ω ∈ Vm,j} =: Zm(ω).

Denote by L8 the constant in Lemma 4.4. Take L9 with (1+L−1
8 )L

2
9e

−8H ≥ e4+2/H and L7 = L8L9, we
obtain by Lemma 4.4 with δ = e−m and y = L9Ψ(e−m−2)/σ(e−m) that for m large enough,

P(Vm,j) ≤ L8(1 + L−1
8 )−y2 ≤ L(m+ 2)−4−2/H ,

4In fact, one can just take ε = 1/2 everywhere.
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thus E[Zm] ≤ Lemm−4−2/H , so that by Markov’s inequality and the Borel–Cantelli lemma, with
probability one there is m1 = m1(ω) > 3 such that for all m > m1(ω), Zm(ω) ≤ emm−2−2/H .

Since σ is regularly varying with index H , using Karamata’s representation we write

σ(x) = xHβ(x) exp

(∫ x

1

α(u)

u
du

)
,

where α(u) → 0, β(x) → C 6= 0 as x→ 0. It is then easy to see that

Ψ(e−mm2/H)

Ψ(e−m)
≥ σ(e−mm2/H)

σ(e−m)
≥ m (42)

for m large enough, say m > m0.
By (39), there exists K(ω) < ∞ such that |X(s)−X(t)| ≤ K(ω)Ψ̃(|t− s|) for all s, t ∈ [0, 1] and

for almost every ω. Pick m2(ω) = max{m0, m1(ω)} and define δ2 = δ2(ω) = e−m2(ω) ∧ η(K(ω), ε).
Then for κ with |κ| < δ2, each m ≥ m2(ω), and each i ∈ Λm, there is j such that [ti−1, ti] ⊆ Sm,j.
Thus by (42) applied on the second line,

∑

i∈I2

Φ(|∆iX|) =
∑

m≥m2(ω)

∑

i∈I2∩Λm

Φ(|∆iX|)

≤
∑

m≥m2(ω)

Zm(ω)Φ(K(ω)Ψ̃(e−m))

≤
∑

m≥m2(ω)

emm−2−2/HΦ(K(ω)Ψ(e−mm2/H))

≤
∑

m≥m2(ω)

m−2(K(ω)1/H + ε) ≤ L.

(43)

Combining (41) and (43) yields that with probability one, for any partition κ with |κ| < δ1 ∧ δ2,

sΦ(X, κ) ≤
2∑

j=1

∑

i∈Ij

Φ(|∆iX|) ≤ L,

completing the proof of the upper bound. Lastly, we note that the final assertion involving the function
Θ is obvious.

Finally, we remark that the upper bound part of Theorem 4.1 may also follow from Theorem 1.3
of [3] along with regular variation techniques in [6]. On the other hand, Theorem 4.1 is stronger in
the sense that it characterizes the critical Φ for which the Φ-variation is non-trivial.

4.2 Moduli of continuity and Hausdorff dimension

We will frequently use the following zero-one law on the moduli of continuity for Gaussian processes.

Lemma 4.6 (Lemma 7.1.1 of [29]). Let (G(t))t∈[0,1] be a centered Gaussian process for which d(t, s) :=
E[(G(t) − G(s))2] is continuous. Let furthermore ω, ρ : [0, 1) → [0,∞) be continuous functions with
ω(0) = ρ(0) = 0, and K ∈ [0, 1] be a compact set. Then

lim
h→0

sup
t,s∈K
|t−s|<h

G(t)−G(s)

ω(|t− s|) ≤ L a.s. =⇒ lim
h→0

sup
t,s∈K
|t−s|<h

G(t)−G(s)

ω(|t− s|) = L′ a.s.
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for some L′ ≥ 0. Similarly, for each s ∈ [0, 1],

lim sup
t∈[0,1], t→s

G(t)−G(s)

ρ(|t− s|) ≤ Ls a.s. =⇒ lim sup
t∈[0,1], t→s

G(t)−G(s)

ρ(|t− s|) = L′
s a.s.

for some L′
s ≥ 0.

Proof of Theorem 2.3. (i) This follows from Lemma 3.7 and Theorem 7.6.4 of [29], applied with φ(h) =
h2H .

(ii) This follows from Lemma 3.8 and Theorem 7.6.4 of [29], applied with φ(h) = h2H(− log h).
(iii) By pathwise Hölder continuity (Proposition A.1 of [40]), for each s ∈ [0, 1],

lim sup
t∈[0,1], t→s

|Y (t)− Y (s)|
|t− s|K <∞ a.s.,

and hence the random variable Zs is well-defined. It remains to show that Zs is strictly positive non-
constant, and unbounded for almost every s ∈ [0, 1]. We fix a large integer L10 > 0 to be determined,
and consider the set of s ∈ [0, 1] such that there exists an infinite sequence nk → ∞ such that for all
k, {sbnk−L10}, {sbnk−L10+1}, . . . , {sbnk} ∈ [0, 1/3]. This condition holds for almost every s ∈ [0, 1] by
considering the b-adic decimal expansion.

Let
Xn = α−n

(
Y (b−n + s)− Y (s)

)
.

We claim that

lim sup
k→∞

E[|Xnk
|2] > 0. (44)

Suppose that (44) holds. Since each Xnk
is Gaussian, for each x ≥ 0, there exists δx > 0 such that

P

(
lim sup
t∈[0,1], t→s

|Y (t)− Y (s)|
|t− s|K > x

)
≥ P

(
lim sup
k→∞

|Xnk
| > x

)
≥ lim sup

k→∞
P(|Xnk

| > x) ≥ δx > 0,

where the second inequality follows from Fatou’s lemma. Taking x = 0 yields Zs > 0 a.s., and taking
x→ ∞ yields that Zs is non-constant and unbounded, as desired.

It remains to establish (44). Using (5), we write

Xn =

∞∑

m=0

αm−n
(
BH({bm−n + bms})− BH({bms})

)
=

n∑

m=1

α−m
(
BH({b−m + bn−ms})−BH({bn−ms})

)
.

By Minkowski’s inequality and since αbH > 1, we have

∥∥∥∥
n∑

m=L10+1

α−m
(
BH({b−m + bn−ms})− BH({bn−ms})

)∥∥∥∥
2

≤
n∑

m=L10+1

α−mb−mH ≤ L(αbH)−L10 . (45)
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On the other hand, for n = nk, we write

L10∑

m=1

α−m
(
BH({b−m + bnk−ms})− BH({bnk−ms})

)

=
L10∑

m=1

α−m
(
BH(b

−m + {bnk−ms})−BH({bnk−ms})
)

=
L10∑

m=1

α−m
(
WH(b

−m + {bnk−ms})−WH({bnk−ms})
)

−
L10∑

m=1

α−m
(
κ(b−m + {bnk−ms})− κ({bnk−ms})

)
WH(1)

=:

∫ 1

0

(
ψnk

(t)−
L10∑

m=1

α−m
(
κ(b−m + {bnk−ms})− κ({bnk−ms})

))
dWH(t).

Since κ is strictly increasing, there is a constant δ > 0 independent of L10 such that

L10∑

m=1

α−m
(
κ(b−m + {bnk−ms})− κ({bnk−ms})

)
> δ.

Moreover, by construction, each ψnk
is supported on [0, 5/6]. By the strong local non-determinism of

WH , we have

∥∥∥∥
∫ 1

0

(
ψnk

(t)−
L10∑

m=1

α−m
(
κ(b−m + {bnk−ms})− κ({bnk−ms})

))
dWH(t)

∥∥∥∥
2

≥ δ

for some δ > 0. Altogether, by Minkowski’s inequality and (45), we conclude that

∥∥Xnk

∥∥
2
≥ δ − L((αbH)−L10 + αL10).

Since δ, L do not depend on L10, picking L10 large enough yields (44), completing the proof.

Suppose that H ≤ K. In this case, Theorem 2.3 is an immediate consequence of covariance
estimates from Section 3.3. On the other hand, covariance estimates do not suffice for establishing
Theorem 2.4. The following new strategy will be needed: we consider a large n and compare the
Wiener–Weierstrass process Y as defined in (5) with a new process

X(n)(t) :=
n−1∑

m=0

αmWH({bmt}). (46)

One easily sees that by the uniform modulus of continuity of WH , the sum converges as n → ∞ if
H < K. Hence, when studying the limit behavior of the process Y , it suffices to consider X(n) because
their difference is of a small scale. A few changes will be needed in the critical case H = K where
one can only truncate the series but cannot replace the bridge BH by the fractional Brownian motion
WH .

The following technical lemma establishes the uniform modulus of continuity of X(n). Note that
when approximating Y with X(n), the number n depends on the scale we look at, which motivates
the choice of Nn below.
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Lemma 4.7. If H < K we define X(n) as in (46), and εn = αn, Nn = nH, δn = b−nH .5 Then we
have

∞∑

n=1

P

(
sup

t,s∈[0,1]
|t−s|<εn/δn

∣∣X(Nn)(t)−X(Nn)(s)
∣∣ ≤ 1

L

(
εn
δn

)H√
− log(εn/δn)

)
<∞. (47)

Proof. The plan is to apply the Sudakov minoration (e.g. Lemma 2.10.2 of [42]) to the increments
of X(Nn) on well-spaced subintervals of [0, 1]. To achieve this goal, we first need to estimate the
covariances. We consider two large constants L11, L12 to be determined later, and for each n consider
subintervals of length εn/(L11δn) of [1/b, 2/3] that are at least L12εn/(2L11δn) apart. We consider the
collection of intervals {[

1

b
+
jL12εn
L11δn

,
1

b
+

(jL12 + 1)εn
L11δn

]}

1≤j≤jn

,

where jn is as large as possible such that the intervals lie in [1/b, 2/3]. One easily sees that jn ≥
δn/(Lεn). Let us define for 1 ≤ j ≤ jn,

∆X
n,j := X(Nn)

(
1

b
+

(jL12 + 1)εn
L11δn

)
−X(Nn)

(
1

b
+
jL12εn
L11δn

)
,

∆W
n,m,j := WH

(
bm
(
1

b
+

(jL12 + 1)εn
L11δn

))
−WH

(
bm
(
1

b
+
jL12εn
L11δn

))
.

We then have for 1 ≤ k < ℓ ≤ jn, for some measurable function fn,

E

[∣∣∣∆X
n,k −∆X

n,ℓ

∣∣∣
2
]

= E

[∣∣∣∣
Nn−1∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)

∣∣∣∣
2]

= E

[∣∣∣∣WH

(
1

b
+
kL12εn
L11δn

)
−WH

(
1

b
+

(kL12 + 1)εn
L11δn

)
+

∫ ∞

1
b
+

(kL12+1)εn
L11δn

fn(x) dWH(x)

∣∣∣∣
2]

≥ 1

L

(
εn

L11δn

)2H

,

where the last step follows from the strong local non-determinism applied to WH (Lemma 7.1 of [36]).
Thus by the Sudakov minoration (e.g., Lemma 2.10.2 of [42]),

E

[
sup

1≤j≤jn

∆X
n,j

]
≥ 1

L

(L12εn
L11δn

)2H
log(jn) ≥

1

L

(εn
δn

)H√
− log(εn/δn).

Moreover, for any j, ∥∥∥∆X
n,j

∥∥∥
2

2
≤ L

(εn
δn

)2H
,

which follows from the negativity of covariances if 0 < H < 1/2 and Lemma 3.1 if 1/2 ≤ H < 1. By
the Gaussian concentration inequality (Theorem 5.4.3 and Corollary 5.4.5 of [29]),

P

(∣∣∣∣ sup
1≤j≤jn

∆X
n,j − E

[
sup

1≤j≤jn

∆X
n,j

]∣∣∣∣ ≥ u

)
≤ L exp

(
−u2

L(εn/δn)2H

)
.

5Without loss of generality, we assume Nn is always an integer, by using instead ⌊nH⌋ or ⌈nH⌉.
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Taking u = L(εn/δn)
H(− log(εn/δn))

1/4 ≪ (εn/δn)
H
√
− log(εn/δn) shows that

∞∑

n=1

P

(
sup

1≤j≤jn

∆X
n,j ≤

1

L
(
εn
δn

)H
√

− log(εn/δn)

)
<∞.

Then (2) holds from the trivial bound

sup
t,s∈[0,1]

|t−s|<εn/δn

(
X(Nn)(t)−X(Nn)(s)

)
≥ sup

1≤j≤jn

∆X
n,j .

This finishes the proof.

Proof of Theorem 2.4. (i) Consider the sequence of numbers εn, δn, Nn as in Lemma 4.7 and denote
by φ(n) = εHn

√
− log εn, and we have by Lemma 4.7 (using here H < K),

∞∑

n=1

P

(
sup

t,s∈[0,1]
|t−s|<εn/δn

∣∣X(Nn)(t)−X(Nn)(s)
∣∣ ≤ 1

L

(
εn
δn

)H√
− log εn

)
<∞.

Note that X(Nn) is H-self-similar, so that

∞∑

n=1

P

(
sup

t,s∈[0,δn]
|t−s|<εn

∣∣X(Nn)(t)−X(Nn)(s)
∣∣ ≤ 1

L
φ(n)

)
<∞. (48)

Due to the continuity of WH , there is an a.s. finite random variable K = K(ω) such that

max

{
WH(1), sup

t∈[0,1]

BH(t)

}
< K.

Consider a number L13 > 0 and the event E1 := {max{WH(1), supt∈[0,1]BH(t)} < L13}, which has
positive probability for all L13. Thus on this event, by the triangle inequality, for t < δn,

|Y (t)−X(Nn)(t)| ≤
∞∑

k=Nn

αkBH({bkt}) +
Nn−1∑

k=0

αk|WH(b
kt)− BH(b

kt)|

≤ LL13α
Nn + L13

Nn−1∑

k=0

αk(bkδn)
τ = o(φ(n)).

(49)

It follows from (48), (49), the triangle inequality, and the Borel–Cantelli lemma that on the event E1,
eventually almost surely

sup
t,s∈[0,δn]
|t−s|<εn

|Y (t)− Y (s)| > 1

L
φ(n).

We then have

P

(
lim
n→∞

sup
t,s∈[0,δn]
|t−s|<εn

|Y (t)− Y (s)| > 1

L
φ(n)

)
≥ P(E1) > 0.
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Since εn forms a geometric sequence, we can extend the limit to a continuous one. That is,

P

(
lim
h→0

sup
t,s∈[0,1]
|t−s|<h

|Y (t)− Y (s)|
hH

√
− log h

>
1

L

)
≥ P(E1). (50)

Recall from Lemma 3.7 that |t − s|H/L ≤
∥∥Y (t)− Y (s)

∥∥
2
≤ L|t − s|H . Theorem 7.2.1 of [29] then

implies that

P

(
lim
n→∞

sup
t,s∈[0,1]
|t−s|<h

Y (t)− Y (s)

hH
√
− log h

≤ L

)
= 1. (51)

Lemma 4.6 together with (50) and (51) then complete the proof.

(ii) Consider the scale εn = αn = b−nH and Nn = nH . We consider three large numbers
L14, L15, L16 to be determined later,6 and for each n consider a number jn and for 1 ≤ j ≤ jn
define

sn,j := b−n(H−L−1
14 )−1 +

jL16εn
L15

and tn,j := b−n(H−L−1
14 )−1 +

(jL16 + 1)εn
L15

= sn,j +
εn
L15

.

We pick the largest integer jn such that tn,jn < b−n(H−L−1
14 ). Observe that

jn ≥ 1

L
b−n(H−L−1

14 )+nH =
1

L
bL

−1
14 n.

For intuition, the reader may compare this with the proof of Lemma 4.7, the intervals [sj, tj ] are now

“well-spaced” subintervals of [b−n(H−L−1
14 )−1, b−n(H−L−1

14 )].
Consider the truncated Wiener–Weierstrass process

Y (n)(t) :=

n−1∑

m=0

αmBH({bmt}).

Define for 1 ≤ j ≤ jn,

∆Y
n,j := Y (Nn)(tn,j)− Y (Nn)(sn,j) and ∆B

n,m,j := BH({bmtn,j})−BH({bmsn,j}). (52)

Let Mn := n(H − L−1
14 ), so that for 0 ≤ m ≤ Mn, ∆

B
n,m,j = BH(b

mtn,j)−BH(b
msn,j).

By definition and Minkowski’s inequality, for 1 ≤ k < ℓ ≤ jn,

∥∥∥∆Y
n,k −∆Y

n,ℓ

∥∥∥
2
=

∥∥∥∥
Nn−1∑

m=0

αm(∆B
n,m,k −∆B

n,m,ℓ)

∥∥∥∥
2

≥
∥∥∥∥

Mn−1∑

m=0

αm(∆B
n,m,k −∆B

n,m,ℓ)

∥∥∥∥
2

−
∥∥∥∥

Nn−1∑

m=Mn

αm∆B
n,m,k

∥∥∥∥
2

−
∥∥∥∥

Nn−1∑

m=Mn

αm∆B
n,m,ℓ

∥∥∥∥
2

.

(53)

Our first goal is to prove the lower bound

E
[
|∆Y

n,k −∆Y
n,ℓ|2

]
≥ 1

L
ε2Hn (− log εn),

6We will later see that L15 depends on L16 and L14 depends on L15, L16.

28



where L may depend on L14, L15, L16. We first bound ‖
∑Nn−1

m=Mn
αm∆B

n,m,k‖2 from above. Consider the
sets

Tn := {m ∈ [Mn, Nn − 1] ∩ Z : {bmsn,j} ≤ {bmtn,j}} and Sn := [Mn, Nn − 1] ∩ Z \ Tn.

Using the bridge relation (3) and Minkowski’s inequality, we write

∥∥∥∥
Nn−1∑

m=Mn

αm∆B
n,m,j

∥∥∥∥
2

=

∥∥∥∥
Nn−1∑

m=Mn

αm(WH({bmtn,j})−WH({bmsn,j})− (κ({bmtn,j})− κ({bmsn,j}))WH(1))

∥∥∥∥
2

≤
∥∥∥∥
∑

m∈Tn

αm(WH({bmtn,j})−WH({bmsn,j}))
∥∥∥∥
2

+

∥∥∥∥
∑

m∈Tn

αm(κ({bmtn,j})− κ({bmsn,j}))WH(1)

∥∥∥∥
2

+

∥∥∥∥
∑

m∈Sn

αmbmεn
L15

(WH({bmtn,j}) +WH(1)−WH({bmsn,j}))
∥∥∥∥
2

+

∥∥∥∥
∑

m∈Sn

αm(κ({bmtn,j}) + 1− κ({bmsn,j}))WH(1)

∥∥∥∥
2

.

The second term is bounded by

∥∥∥∥
Nn−1∑

m=Mn

αm(κ({bmtn,j})− κ({bmsn,j}))WH(1)

∥∥∥∥
2

≤
Nn−1∑

m=Mn

αm

(
bmεn
L15

)τ

≤ LεHn .

To estimate the first term, we define

fn(t) :=
∑

m∈Tn

αm
1[{bmsn,j},{bmtn,j}](t),

so that ∥∥∥∥
Nn−1∑

m=Mn

αm(WH({bmtn,j})−WH({bmsn,j}))
∥∥∥∥
2

2

= E

[∣∣∣∣
∫ ∞

0

fn(t) dWH(t)

∣∣∣∣
2
]
.

By Theorem 3.3 and self-similarity of WH ,

E

[∣∣∣∣
∫ ∞

0

fn(t) dWH(t)

∣∣∣∣
2
]
≤ L(Nn −Mn)ε

2H
n ≤ Lnε2Hn

L14

where L does not depend on L14. Similar estimates hold for the third and fourth terms using the case
k = 2 of Theorem 3.3. We then conclude that

∥∥∥∆Y
n,k −∆Y

n,ℓ

∥∥∥
2
≥
∥∥∥∥

Mn−1∑

m=0

αm(∆B
n,m,k −∆B

n,m,ℓ)

∥∥∥∥
2

− L
√
nεHn
L14

. (54)

Next, we bound ‖∑Mn−1
m=0 αm(∆B

n,m,k −∆B
n,m,ℓ)‖2 from below. We first define ∆W

n,m,k similarly as in
(52), so by a similar Minkowski’s inequality argument, it suffices to give a lower bound for

∥∥∥∥
Mn−1∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)

∥∥∥∥
2

.
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This is done again by an induction argument. Consider first the term with m = 0. We compute

E[|∆W
n,0,k −∆W

n,0,ℓ|2] = E[|∆W
n,0,k|2] + E[|∆W

n,0,ℓ|2]− 2E[∆W
n,0,k∆

W
n,0,ℓ]

≥ 2

(
εn
L15

)2H

− 2L

(
εn
L15

)2(
L16εn
L15

)2H−2

=

(
2

L2H
15

− 2LL2H−2
16

L2H
15

)
ε2Hn ,

where the last line follows from the mean-value theorem and the number L does not depend on
L15, L16. Picking L16 large enough we see that

E
[
|∆W

n,0,k −∆W
n,0,ℓ|2

]
≥ ε2Hn
LL2H

15

. (55)

Consider the case 1 ≤M ≤Mn − 1. By self-similarity,

E
[
|αM(∆W

n,M,k −∆W
n,M,ℓ)|2

]
≥ ε2Hn
LL2H

15

.

Thus we have

E

[∣∣∣
M∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)
∣∣∣
2
]
− E

[∣∣∣
M−1∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)
∣∣∣
2
]

= E

[∣∣∣αM(∆W
n,M,k −∆W

n,M,ℓ)
∣∣∣
2
]
+ 2E

[
αM(∆W

n,M,k −∆W
n,M,ℓ)

(M−1∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)
)]

≥ ε2Hn
LL2H

15

+ 2αME

[
(∆W

n,M,k −∆W
n,M,ℓ)

(M−1∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)
)]
.

(56)

Consider first 0 < H ≤ 1/2 where the increments of WH are negatively correlated, then

E

[
(∆W

n,M,k −∆W
n,M,ℓ)

(M−1∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)
)]

≥ E

[
∆W

n,M,k

(M−1∑

m=0

αm∆W
n,m,k

)]
+ E

[
∆W

n,M,ℓ

(M−1∑

m=0

αm∆W
n,m,ℓ

)]

=
M−1∑

m=0

αmE

[
∆W

n,M,k∆
W
n,m,k +∆W

n,M,ℓ∆
W
n,m,ℓ

]
.

(57)

Observe that for m < M and 1 ≤ j ≤ jn, b
mtn,j < bMsn,j − bM/L, so that by mean-value theorem

(recalling tn,j − sn,j = εn/L15)

|E[∆W
n,M,k∆

W
n,m,k]| ≤ L

(bM
L

)2H−2

bm+M ε2n
L2
15

, (58)

where L does not depend on L15. Using the relation M < nH and εn = αn = b−nH , and combining
(56), (57), and (58), we have for L15 large enough,

E

[∣∣∣
M∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)
∣∣∣
2
]
− E

[∣∣∣
M−1∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)
∣∣∣
2
]
≥ ε2Hn

L
.

30



By summing over the previous relation and using (55), we obtain

E

[∣∣∣
M∑

m=0

αm(∆W
n,m,k −∆W

n,m,ℓ)
∣∣∣
2
]
≥ Mε2Hn

L
≥ 1

L
ε2Hn (− log εn).

A similar argument works for H > 1/2. Combining with (54) and (53), we obtain that for L14 large
enough, ∥∥∥∆Y

n,k −∆Y
n,ℓ

∥∥∥
2
≥ 1

L
εHn
√

− log εn.

Therefore, by the Sudakov minoration,

E

[
sup

1≤j≤jn

∆Y
n,j

]
≥ 1

L

(
1

L
εHn

√
−εn

)√
log jn ≥ 1

L
εHn (− log εn).

Our next goal is to bound ‖∆Y
n,j‖2 from above. Using Minkowski’s inequality and Lemma 3.8,

∥∥∥∆Y
n,j

∥∥∥
2
≤
∥∥Y (tn,j)− Y (sn,j)

∥∥
2
+
∥∥∥Ỹ (Nn)(tn,j)− Ỹ (Nn)(sn,j)

∥∥∥
2
≤ LnεHn +

∥∥∥Ỹ (Nn)(tn,j)− Ỹ (Nn)(sn,j)
∥∥∥
2
,

where

Ỹ (Nn)(t) =
∞∑

m=Nn

αmBH({bmt}).

By a similar argument as in (49) and Gaussian concentration,

∥∥∥Ỹ (Nn)(tn,j)− Ỹ (Nn)(sn,j)
∥∥∥
2
≤ LεHn ,

and hence, ‖∆Y
n,j‖2 ≤ LnεHn . By the Gaussian concentration inequality,

P

(∣∣∣∣ sup
1≤j≤jn

∆Y
n,j − E

[
sup

1≤j≤jn

∆Y
n,j

]∣∣∣∣ ≥ u

)
≤ L exp

(
−u2
Lnε2Hn

)
.

Choose H ′ ∈ (max{2H, 1}, 2). Taking u = εHn (− log εn)
H′

and using the trivial bound

sup
t,s∈[0,1]
|t−s|<εn

(
Y (Nn)(t)− Y (Nn)(s)

)
≥ sup

1≤j≤jn

∆Y
n,j

yield that
∞∑

n=1

P

(
sup

t,s∈[0,1]
|t−s|<εn

(
Y (Nn)(t)− Y (Nn)(s)

)
≤ 1

L
εHn (− log εn)

)
<∞.

Consider a large number L17 and the non-trivial event

E2 :=

{
sup
0≤t≤1

BH(t) ≤ L17

}
.

Thus on this event, ∣∣∣∣
(
Y (Nn)(t)− Y (Nn)(s)

)
−
(
Y (t)− Y (s)

)∣∣∣∣ ≤ LL17ε
H
n .
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By the Borel–Cantelli lemma, on E2 we have eventually a.s.

sup
t,s∈[0,1]
|t−s|<εn

|Y (t)− Y (s)| > 1

L
εHn (− log εn).

Since εn = αn forms a geometric sequence, we obtain

P

(
lim
n→∞

sup
t,s∈[0,1]
|t−s|<h

Y (t)− Y (s)

hH(− log h)
>

1

L

)
≥ P(E2) > 0. (59)

Recall from Lemma 3.8 that |t − s|H
√

− log |t− s|/L ≤
∥∥Y (t)− Y (s)

∥∥
2
≤ L|t − s|H

√
− log |t− s|.

Theorem 7.2.1 of [29] then implies that

P

(
lim
n→∞

sup
t,s∈[0,1]
|t−s|<h

Y (t)− Y (s)

hH(− log h)
≤ L

)
= 1. (60)

Lemma 4.6 together with (59) and (60) then complete the proof.

(iii) This follows directly from Theorem 2.3(iii).

Proof of Theorem 2.6. The upper bound of the Hausdorff dimension follows from pathwise Hölder
continuity (Proposition 2.3 of [10] and Proposition A.1 of [40]). To show the lower bound, first note
that by Lemma 3.7, if H < K, there exists L ∈ N such that

E

[∣∣∣∣
Y (t)− Y (s)

|t− s|H
∣∣∣∣
2
]
≥ 1

L
for (s, t) ∈ [0, 1]2, |s− t| < b−L.

Thus by Gaussianity, there exists some a > 0 such that for all 0 ≤ k < bL,

sup
s,t∈[kb−L,(k+1)b−L]

P

(
−x ≤ Y (t)− Y (s)

|t− s|H ≤ x

)
≤ ax as x→ 0+.

By Theorem 2 of [26], the Hausdorff dimension of the graph Y on [kb−L, (k + 1)b−L] is bounded from
below by 2 −H almost surely. By countable stability of the Hausdorff dimension (see Section 2.2 of
[10]), we must have dim(Y ) ≥ 2 −H on [0, 1]. The case H = K is similar using Lemma 3.8 instead
of Lemma 3.7.

The case H > K requires more work. Recall from (6) that K = min{1, (− logb α)} = − logb α, so
it suffices to prove for a fixed ε > 0 that dim(Y ) ≥ 2 + logb(α) − 2ε. Let us fix b ∈ N, H ∈ (0, 1),
α ∈ (0, 1) with αb2H−1 < 1, and ε > 0. By the potential-theoretic lower bound (see Section 4.3 of
[10]), it suffices to find a probability measure ν = νω on the graph Gω of Y such that

Iω :=

∫

Gω

∫

Gω

dν(t) dν(s)

|t− s|γ <∞ a.s. (61)

Recall (35). Let N be a large even number such that bN(1−ε) < bN − 2. Define a set SN ⊆ [0, 1] by
its bN/2-adic expansion, such that x =

∑∞
i=1 ξib

−iN/2 ∈ SN if ξi ∈ {1, 2, . . . , bN/2 − 2} for all i. It is
elementary to check that SN ⊆ TN . Moreover, the set SN in Lemma 3.9 is a Cantor-like self-similar
set. We may define the uniform measure on SN , similarly to the construction of the Cantor measure
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(see Example 17.1 of [10]). This can be done, for instance, by choosing each decimal ξi independently
and uniformly from {1, . . . , bN/2 − 2}. Denote such a measure by µN . It is then standard to verify
that if bN(1−ε)/2 < bN/2 − 2, then

∫

TN

∫

TN

|t− s|ε−1dµN(t) dµN(s) <∞; (62)

see, for instance, Exercise 4.11 of [10] for the Cantor set.
We let ν be the pushforward of µN under the map t 7→ (t, X(t, ω)), thus reducing (61) to proving

that

E[Iω] =

∫

TN

∫

TN

E

[(
|t− s|2 + |Y (t)− Y (s)|2

)−γ/2
]
dµN(t) dµN(s) <∞.

By Lemma 3.9 and a similar computation as in the proof of Theorem 2(i) of [26], we obtain

E

[(
|t− s|2 + |Y (t)− Y (s)|2

)−γ/2
]
≤ L|t− s|−γ+1+logb(α) ≤ L|t− s|ε−1.

Combining with (62) yields E[Iω] <∞, and hence the proof is complete.

4.3 Distribution of the maximum location

Proof of Theorem 2.7. Suppose firstH ≤ K, we prove that for all s ∈ [0, 1], P(s is a local maximum) =
0. By arguing similarly as in the proof of (b) and (c) of Theorem 2.3 and applying Lemma 4.6, for
H = K, there exists a deterministic function C1 : [0, 1] → R+ such that for all s ∈ [0, 1],

P

(
lim inf

t∈[0,1], t→s

Y (t)− Y (s)√
2|t− s|2H log(1/|t− s|) log log(1/|t− s|)

= −C1(s)

)
= 1,

and for H < K, there exists C2 : [0, 1] → R+ such that

P

(
lim inf

t∈[0,1], t→s

Y (t)− Y (s)√
2|t− s|2H log log(1/|t− s|)

= −C2(s)

)
= 1.

This along with parts (b) and (c) of Theorem 2.3 proves P(s is a local maximum) = 0.
For the remainder of the proof, let H > K. We prove that P(0 is a global maximum) > 0. We

make an auxiliary claim that there is a Lipschitz function φ : [0, 1] → R such that7

• φ(0) = φ(1) = 0, φ(t) > 0 for all t ∈ (0, 1). In particular, φ attains its minimum at 0, 1;

• φ ∈ HH where HH is the Cameron–Martin space of the fractional Brownian motion with pa-
rameter H .

Provided the claim is true, we consider a large number L and let

f(t) := L
∞∑

m=0

αmφ({bmt})

be the fractal function associated with Lφ. It is easy to see that f(t) attains its minima at 0, 1, and8

f(t) ≥ L(t ∧ (1− t))K . (63)

7φ(t) = 1− cos(2πt) may work, but we take the shortest path.
8Of course, the L here may not be the same and may depend on the choice of φ.
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Consider the process

Ỹ (t) := Y (t) + f(t) =

∞∑

m=0

αmB̃H({bmt}),

so that Y (t) = Ỹ (t)− f(t). It suffices to show Ỹ (t) is Hölder continuous with exponent − logb(α) and

constant < 1/L with positive probability, because this implies P(|Ỹ (t)| ≤ 1
L
(t∧ (1− t))K) > 0, which

along with (63) yields P(Y (t) ≤ 0, ∀t ∈ [0, 1]) > 0.
We recall in the proof of Proposition A.1 of [40] and the uniform modulus of continuity of fractional

Brownian bridge that there exists δ1 > 0 such that we have the inclusion of events

{
sup
t∈[0,1]

|B̃H(t)| ≤ δ1

}
⊆
{
Ỹ (t) is − logb(α)-Hölder with constant

1

L

}
.

By the bridge relation and since B̃H(t) = BH(t) + Lφ(t), there is δ2 > 0 depending on κ such that

{
sup
t∈[0,1]

|WH(t) + Lφ(t)| ≤ δ2

}
⊆
{

sup
t∈[0,1]

|BH(t) + Lφ(t)| ≤ δ1

}
⊆
{

sup
t∈[0,1]

|B̃H(t)| ≤ δ1

}
.

Since φ ∈ HH , so does −Lφ. This implies the probability of the event on the left-hand side is positive
by Theorem 2 of [28] (or by the Cameron–Martin Theorem for the fractional Brownian motion).
Combining the above gives

P
(
Ỹ (t) is − logb(α)-Hölder continuous with constant 1/L

)
> 0.

We now prove the auxiliary claim. The function φ will arise from φ1 of the form

φ1(t) :=

∫ t

0

(t− s)H−1/2ψ1(s) ds

where ψ1(s) = s(1− s). It is easy to see that there is T > 0 with φ1(0) = φ1(T ) = 0 and φ1 is positive
and Lipschitz on [0, T ]. Define ψ(s) := ψ1(Ts) and

φ(t) :=

∫ t

0

(t− s)H−1/2ψ(s) ds,

by a change of variable we obtain the first item of the claim; that φ ∈ HH follows from Theorem 5.4
of [35] and the fact that ψ is square-integrable.
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