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Abstract

In this paper we study the self-similar processes with stationary increments in a
discrete-time setting. Different from the continuous-time case, it is shown that the
scaling function of such a process may not take the form of a power function b(a) = aH .
More precisely, its scaling function can belong to one of three types, among which
one type is degenerate, one type has a continuous-time counterpart, while the other
type is new and unique for the discrete-time setting. We then focus on this last
type of processes, construct two classes of examples, and prove a special spectral
representation result for the processes of this type. We also derive basic properties of
discrete-time self-similar processes with stationary increments of different types.
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1 Introduction

Self-similar processes has been an important research topic in stochastic processes
for a long time, due to its technical tractability and various applications in areas such as
finance and physics. A general introduction of self-similar processes can be found, for
example, in [2] and [8].

Among self-similar processes, those having stationary increments, abbreviated as “ss-
si processes”, often attract special attention from the researchers. The ss-si processes
combine two types of probability symmetries: self-similarity, corresponding to the
invariance of the distribution under rescaling, and the stationarity of the increments,
corresponding to the invariance of the distribution of the increments under translation.
As a result, they possess many desirable properties and include commonly used processes
such as fractional Brownian motions and stable Lévy processes.
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On discrete-time self-similar processes with stationary increments

The classical setting for self-similar processes is in continuous-time. In this case,
if a process X = {X(t)}t≥0 satisfies that for any a > 0, there exists b(a) > 0 such that

{X(at)}t≥0
d
= {b(a)X(t)}t≥0, then X is said to be self-similar. It is easy to show that if

the process is in addition nontrivial and stochastically continuous at 0, then the only
possible functions b to make this condition hold are b(a) = aH for some H ≥ 0 ([2]).
Consequently, self-similar processes are also often defined as processes X such that

{X(at)}t≥0
d
= {aHX(t)}t≥0. It should be noted, however, that the second definition of

the self-similar processes is not what the term “self-similar” originally or literally means.
It is taken as a definition simply because of the equivalence between the two definitions
of self-similarity. Logically, if one takes the first definition as the original definition, then
the second definition should be regarded as a property of self-similarity.

In this paper we consider dt-ss-si processes, the self-similar processes with stationary
increments defined on N0, the set of all non-negative integers, instead of on [0,∞). The

self-similarity in discrete-time becomes {Xnm}m∈N0

d
= {b(n)Xm}m∈N0

, where n can only
be positive integers now. Interestingly, it turns out that when defined on N0, the two
definitions of self-similarity are no longer equivalent. More precisely, besides the case
where b(n) = nH , H > 0 and the degenerate case where b(n) ≡ 1, a new possibility
b(n) = (|n|p)H , H > 0 arises. Here |n|p is the p-adic norm of n, which can be defined as
p−a if pa|n but pa+1 - n, a ∈ N0. As one can see from the later parts of this paper, this
change from the continuous-time case is mainly due to the discretization of the possible
rescaling factor and the drop of the continuity requirement, which no longer makes
sense in the discrete-time setting.

As the new, nondegenerate type in the discrete-time setting, the case where b(n) =

(|n|p)H , H > 0 is further studied in this paper. Two classes of dt-ss-si processes having
such scaling function b are constructed. Moreover, we find that the dt-ss-si processes
which are of this type and in L2 have a very particular spectral representation. Very
roughly speaking, such a process can always be decomposed into waves with periods of
different powers of p and magnitudes decreasing in period.

The rest of this paper is organized as follows: Section 2 introduces basic settings and
notations. Section 3 establishes the classification theorem, followed by an embedding
result for dt-ss-si processes with b(n) = nH and basic properties for dt-ss-si processes
of different types. Sections 4 and 5 focus on the dt-ss-si processes with b(n) = (|n|p)H .
We give two classes of such processes in Section 4, then state and prove the spectral
representation using the notion of almost periodic functions in Section 5.

2 Basic settings and notations

Let N0 = {0, 1, . . . } be the set of non-negative integers and N = {1, 2, . . . } be the set
of positive integers. We first extend the definition of self-similarity to discrete-time. In
order to ensure that the rescaled process is comparable to the original process, the
scaling factor must be a positive integer in this case. Therefore, we have

Definition 2.1. A real-valued discrete-time stochastic process X = {Xm}m∈N0 is called
a discrete-time self-similar process, if for any n ∈ N, there exists b(n) > 0, such that

{Xnm}m∈N0

d
= {b(n)Xm}m∈N0

. (2.1)

Here and later, “
d
=” means equality in the sense of distribution, i.e., the two sides of

this symbol have the same distribution.
Denote by P = {2, 3, 5, . . . } the set of all primes. It can be easily seen from (2.1)

that the scaling function b(n) for a discrete-time self-similar process must be completely
multiplicative, i.e., b(m)b(n) = b(mn) for all m,n ∈ N. Consequently, for n =

∏
pi∈P p

ri
i ,
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On discrete-time self-similar processes with stationary increments

b(n) =
∏
pi∈P(b(pi))

ri , hence b(n) is determined by its values on P. On the other hand, any
completely multiplicative function b : N→ R+ is a legitimate scaling function for some
discrete-time self-similar process. A simple example is given by X0 = 0, Xn = b(n)X1 for
n ≥ 1.

Recall that a discrete-time stochastic process X = {Xm}m∈N0
is said to have station-

ary increments, if its increment process is stationary. In other words, for any k ∈ N,

{Xm+1 −Xm}m∈N0

d
= {Xm+k+1 −Xm+k}m∈N0 . (2.2)

In this paper, we are mainly interested in the discrete-time self-similar processes with
stationary increments, dt-ss-si processes. They are the processes that satisfy both (2.1)
and (2.2).

3 Classification and properties of dt-ss-csi processes

In this part we show that the dt-ss-si processes can be classified into three types
according to their scaling properties. Among these three types, one has a continuous-
time counterpart, one is degenerate, while the other only exists for the discrete case. It
turns out that the results in this section actually work for a larger family of processes for
which both the self-similarity and the stationarity of the increments only hold marginally.
Moreover, the stationarity of the increments can be relaxed to the cyclostationarity with
any fixed integer period. We begin this section by generalizing these notions, and will
work with the processes which are marginally self-similar with marginally cyclostationary
increments in this section.

Definition 3.1. Let X = {Xm}m∈N0 be a discrete-time stochastic process. If (2.1) holds
marginally, i.e., for any m ∈ N0 and n ∈ N,

Xnm
d
= b(n)Xm, (3.1)

then X is called marginally self-similar.

Definition 3.2. Let τ ∈ N. A stochastic process X = {Xm}m∈N0 is said to have
marginally cyclostationary increments with period τ , if for any k,m ∈ N0,

Xm+1 −Xm
d
= Xm+kτ+1 −Xm+kτ . (3.2)

A discrete-time, marginally self-similar process having marginally cyclostationary
increments with period τ is denoted as dt-ss-csi(τ ), or dt-ss-csi when it is not necessary
to specify the value of τ .

The case X ≡ 0 being trivial, we assume the distribution of X1 is nondegenerate.
For any probability distribution F on (R,B(R)) and a ∈ R, denote by “Y/a ∼ F” the
relation that P(Y ∈ B) = F (aB) for any Borel set B ⊂ R, where aB = {ax : x ∈ B}. Here
and later, we always identify a probability distribution on (R,B(R)) with its distribution
function.

The main result of this section is the following Ostrowski-type classification theorem.
Note that since the marginal distributions of X are not necessarily in L1, we do not
have the triangle inequality required by a direct application of the classical Ostrowski’s
theorem.

Theorem 3.3. The scaling function b(n) of a dt-ss-csi(τ ) process must be one of the
followings:

1. b(n) = 1 for all n ∈ N.

2. There exist a unique prime p and H > 0 such that b(n) = (|n|p)H . In other words,
b(p) < 1 and b(q) = 1 for q ∈ P, q 6= p.
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3. There exists H > 0 such that b(n) = nH for all n ∈ N.

Conversely, for any completely multiplicative function b(n) on N satisfying one of the
conditions above, there exists a non-trivial dt-ss-si process having b(n) as its scaling
function.

Some preparatory results are needed to prove Theorem 3.3.

Proposition 3.4. Let G1, G2, G3 be probability distributions on R. Assume G1 is not
concentrated at 0. Then if there exist constants k2, k3, such that for a1, a2, a3 ≥ 0,

a1 > k2a2 + k3a3, (3.3)

there do not exist random variables Yi, i = 1, 2, 3, satisfying Yi/ai ∼ Gi and
∑3
i=1 Yi = 0.

Proof. Let Qi(t) be the quantile function of Gi:

Qi(t) = inf{x ∈ R : Gi(x) ≥ t}, t ∈ (0, 1), i = 1, 2, 3.

Note that Qi is non-decreasing. Moreover, as G1 is not concentrated at 0, either
G1((0,∞)) > 0, or G1((−∞, 0)) > 0.

First assume G1((0,∞)) > 0. Then there exists s ∈ (0, 1), such that Q1(s) > 0. For
0 < c < d < 1, define the average quantile functional from c to d:

Q̄i([c, d]) =
1

d− c

∫ d

c

Qi(t)dt.

We use a result in [6], where
∑3
i=1 Yi = 0 is translated into the “joint mixability” of the

distributions of Y1, Y2, Y3 with center 0. By linearity of the average quantile functional,
the average quantile functionals for Yi satisfying Yi/ai ∼ Gi, denoted by q̄i, satisfy

q̄i([c, d]) = aiQ̄i([c, d]), 0 < c < d < 1.

Take β1 = s, β2, β3 > 0 such that β =
∑3
i=1 βi < 1. By Proposition 3.3 in [6], a

necessary condition for the distributions of Yi, i = 1, 2, 3 to be jointly mixable is

3∑
i=1

q̄i([βi, βi + 1− β]) ≤ 0. (3.4)

(3.4) implies that

a1Q̄1([s, s+ 1− β]) ≤ −
∑
i=2,3

aiQ̄i([βi, βi + 1− β]). (3.5)

Note that Q̄1([s, s+ 1− β]) > 0 by construction. Thus, it suffices to take

ki = − Q̄i([βi, βi + 1− β])

Q̄1([s, s+ 1− β])
, i = 2, 3.

For the other case, assume that G1((−∞, 0)) > 0. As a result, there exists s ∈ (0, 1),
such that Q1(s) < 0. Similarly as in the previous case, Proposition 3.3 in [6] gives another
necessary condition for the distributions of Yi, i = 1, 2, 3 to be jointly mixable:

3∑
i=1

q̄i([β − βi, 1− βi]) ≥ 0. (3.6)
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By taking β1 = 1− s, β2, β3 > 0 such that β =
∑3
i=1 βi < 1, (3.6) becomes

a1Q̄1([s− (1− β), s]) ≥ −
∑
i=2,3

aiQ̄i([β − βi, 1− βi]).

Recall that since Q1(s) < 0 and Q1 is non-decreasing, Q̄1([s− (1− β), s]) < 0. Hence it
suffices to take

ki = − Q̄i([β − βi, 1− βi])
Q̄1([s− (1− β), s])

, i = 2, 3.

Proposition 3.5. Under the same setting as in Proposition 3.4, if in addition, G1 and
G2 satisfy G1(B) = G2(−B) for any Borel set B ⊂ R, then for every k2 > 1, there exists
k3 ∈ R such that the result in Proposition 3.4 holds.

Proof. We prove the case where G1((0,∞)) > 0. The case where G1((−∞, 0)) > 0 is
symmetric.

In the proof of Proposition 3.4, since Q1 is non-decreasing and not constantly 0 on
(0, 1), there exists s ∈ R such that Q1(s) > 0, and Q1 is continuous at s. As a result, there
exists ε ∈ (0, s ∧ (1− s)) satisfying

Q̄1([s− ε, s]) > 1

k2
Q̄1([s, s+ ε]) > 0.

Moreover, note that Q̄1([c, d]) = −Q̄2([1− d, 1− c]) for all 0 < c < d < 1. Taking β1 = s− ε,
β2 = 1− s− ε and β3 = ε, (3.4) becomes

a1Q̄1([s− ε, s]) ≤ a2Q̄1([s, s+ ε])− a3Q̄3([ε, 2ε]).

It suffices to take k3 = − Q̄3([ε,2ε])
Q̄1([s−ε,s]) .

As immediate consequences of Propositions 3.4 and 3.5, we have

Corollary 3.6. Let {Xn}n∈N0 be a dt-ss-csi(τ ) process, and b(n), n ∈ N be its scaling
function. Then for any m ∈ N, k > 1, there exists cm ∈ R, such that

b(n+m) ≤ kb(n) + cm, n ∈ N0.

Proof. By the cyclostationarity of the increments, Xn+m−Xn
d
= Xn′+m−Xn′ , where n′ is

the residue of n modulo τ . Then by Proposition 3.5 with G1, G2, G3 being the distributions
of X1,−X1, Xn′ − Xn′+m, a1 = b(n + m), a2 = b(n), a3 = 1, there exists cn′,m ∈ R such
that b(n+m) ≤ kb(n) + cn′,m. It remains to take cm =

∨τ−1
n′=0 cn′,m.

Corollary 3.7. Let {Xn}n∈N0
be a dt-ss-csi(τ ) process, and b(n), n ∈ N be its scaling

function, which is not identically 1. Then for any m ∈ N, there exists dm > 0, such that
b(nτ) ∨ b(nτ +m) ≥ dm for all n ∈ N0.

Proof. Similarly as in the proof of Corollary 3.6, Xnτ+m −Xnτ
d
= Xm −X0 = Xm, where

the second equality holds since the (marginal) self-similarity clearly implies X0 = 0

almost surely when b(n) 6≡ 1. Applying Proposition 3.4 with G1, G2 and G3 being the
distributions of Xm, X1,−X1 respectively, and a1 = 1, a2 = b(nτ), a3 = b(nτ +m), there
exist constants k2,m and k3,m, such that 1 ≤ k2,mb(nτ) + k3,mb(nτ + m). Moreover, as
b(nτ) and b(nτ +m) are non-negative, k2,m and k3,m can be chosen to be strictly positive,
hence b(nτ) ∨ b(nτ +m) ≥ 1

k2,m+k3,m
=: dm.
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Proof of Theorem 3.3. Define function f(p) := logp b(p). Let A = {f(p) : p ∈ P} be the set
of possible values of f for prime numbers. We first prove that A is bounded from above
by contradiction. Suppose sup(A) =∞. Then for any L > 0, PL := {p ∈ P : f(p) ≥ L} is
not empty. Choose L large enough such that 2 6∈ PL. Denote by pL the smallest element
in PL. Then for any n < pL, b(n) < nL. Hence

b(pL − 1) = b(2)b

(
pL − 1

2

)
< b(2)

(
pL − 1

2

)L
<
b(2)

2L
(pL)L ≤ b(2)

2L
b(pL). (3.7)

Since b(2) is a fixed constant, b(pL)/b(pL − 1) → ∞ as L → ∞. Thus, for any k > 1

and c ∈ R, there exists L large enough such that b(pL) > kb(pL − 1) + c, contradicting
Corollary 3.6. Hence A must be bounded from above.

Next we show that if sup(A) > 0, then this supremum must be achieved by some
p ∈ P. Suppose there doesn’t exist p ∈ P such that f(p) = H := sup(A) > 0. In particular,
ε := H − f(2) > 0. For each n ∈ N, let pn be the smallest prime such that f(pn) > H − 1

n .
Thus the sequence {pn} and {f(pn)} are both non-decreasing, with limits ∞ and H

respectively. Let N ∈ N be such that 1/N < ε and H − 1/N > 0, then for n ≥ N , we have
by a similar argument as (3.7),

b(pn)

b(pn − 1)
≥ 2H−1/n

b(2)
≥ 2ε−1/N =: K > 1. (3.8)

This contradicts Corollary 3.6, as for k ∈ (1,K) and any c1 ∈ R, since b(pn) ≥ pH−1/N
n →

∞ as n→∞, b(pn) > kb(pn − 1) + c for n large enough.
As a result, if sup(A) > 0, there must exist p ∈ P, such that f(p) = sup(A). We show

that in this case, f(q) = sup(A) for any q ∈ P. As a result, b(n) = nH for n ∈ N and
H = sup(A) > 0. Suppose this is not true, then there exists q ∈ P satisfying f(q) < f(p).
For each r ∈ N satisfying pr > q, there exists m ∈ {1, · · · , q − 1}, such that q|pr −m. By
Corollary 3.6, for any k > 1, we have

b(pr) ≤ kb(pr −m) + cm ≤ kb(pr −m) + c, (3.9)

where c = ∨q−1
m=1cm. However, note that

b(pr −m) = b(q)b

(
pr −m
q

)
≤ b(q)

(
pr −m
q

)H
<
b(q)

qH
prH =

b(q)

qH
b(pr).

By the choice of q, b(q)
qH

< 1. Hence (3.9) can not hold for k ∈ (1, q
H

b(q) ) and r large enough.

Thus, we conclude that f(q) = sup(A), and consequently, b(n) = nH .
It remains to consider the case where sup(A) ≤ 0, which is equivalent to b(n) ≤ 1 for

all n ∈ N. Suppose there exist two distinct primes p, q ∈ P such that b(p) < 1 and b(q) < 1.
Let dm,m = 1, . . . , τ be as given in Corollary 3.7 and define d =

∧τ
m=1 dm. Take i, j large

enough so that (b(p))i < d and (b(q))j < d. By Bézout’s lemma, there exist M,N ∈ N
such that 0 < Mpi − Nqjτ ≤ τ . Corollary 3.7 then implies that b(Mpi) ∨ b(Nqjτ) ≥ d.
However, by the choices of i and j we have b(Mpi) ≤ b(pi) < d and b(Nqjτ) ≤ b(qj) < d,
contradiction. Therefore there exists at most one prime p such that b(p) < 1. This leads
to cases (1) and (2).

Finally, for any completely multiplicative function b(n) satisfying one of the three
conditions in Theorem 3.3, there exists a non-trivial dt-ss-si process having b(n) as its
scaling function, according to Examples 3.8, 4.1, 4.5 and Theorem 3.9 that we will
see.

It should be pointed out that a similar result was obtained in [3] for second-order
dt-ss-si processes, i.e., the processes in L2 whose covariance functions satisfy properties
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related to the self-similarity and the stationarity of the increments of the process. In this
sense, Theorem 3.3 can be regarded as a generalization of that result to the general
dt-ss-si processes which are not necessarily in L2.

Example 3.8. Let Xn, n ∈ N0 be independent and identically distributed random vari-
ables, then {Xn}n∈N0

is a trivial example of a dt-ss-si process with b(n) = 1, n ∈ N.

We call the dt-ss-si processes with scaling functions satisfying the three cases in
Theorem 3.3 dt-ss-si processes of types I, II, III, respectively. Type III is what people are
familiar with from the continuous-time ss-si processes. The following theorem shows
that there is indeed a correspondence between the continuous-time ss-si processes and
the dt-ss-si processes of type III.

Theorem 3.9. If {X(t)}t≥0 is an ss-si process, then {Xn}n∈N0
given by Xn = X(n), n ∈

N0 is a dt-ss-si process. Conversely, if {Xn}n∈N0
is a dt-ss-si process with scaling function

b(n) = nH for H > 0, then there exists a unique in distribution ss-si process {X(t)}t≥0,

such that {X(n)}n∈N0

d
= {Xn}n∈N0

.

Proof. An ss-si process observed at discrete-time N0 is clearly a dt-ss-si process, hence
we focus on the other direction. For that purpose, we will derive the distribution of the
ss-si process, Y = {Y (t)}t≥0, from any arbitrary dt-ss-si process X = {Xn}n∈N0 , so that
they have the same distribution on N0.

First, it is not difficult to determine the distribution of Y on Q+ = Q ∩ [0,∞) by
self-similarity:

(Y (s1/t1), . . . , Y (sn/tn))
d
= (t1t2 . . . tn)−H(Xs1t2...tn , . . . , Xt1...tn−1sn) (3.10)

for {si}ni=1 ⊂ N0, {ti}ni=1 ⊂ N. This distribution does not depend on the choice of si and
ti, i = 1, . . . , n. Moreover, since the original finite-dimensional distributions on N0 are
consistent, the finite-dimensional distributions on Q+ are also consistent. Hence, by
Kolmogorov’s extension theorem, such a process {Y (r)}r∈Q+ exists. One can check that
{Y (r)}r∈Q+ is ss-si on Q+. Indeed, for any n ∈ N, p, s1, . . . , sn ∈ N0 and q, t1, . . . tn ∈ N,

{Y (si/ti)}i=1,...,n
d
= (

n∏
i=1

ti)
−H{X(si/ti)

∏n
i=1 ti
}i=1,...,n

d
= (pqn−1

n∏
i=1

ti)
−H{Xpqn−1(si/ti)

∏n
i=1 ti
}i=1,...,n

d
= (p/q)−H{Y (sip/tiq)}i=1,...,n.

(3.11)

Also, by the stationarity of the increments of {Xn}n∈N0
,

{Y (si/ti)}i=1,...,n

d
= (qn

n∏
i=1

ti)
−H{Xqn(si/ti)

∏n
i=1 ti
}i=1,...,n

d
= (qn

n∏
i=1

ti)
−H{X(siqnt

−1
i +pqn−1)

∏n
i=1 ti

−Xpqn−1
∏n

i=1 ti
}i=1,...,n

d
= (qn

n∏
i=1

ti)
−H(X(siq+pti)qn−1t−1

i

∏n
i=1 ti

−Xpqn−1
∏n

i=1 ti
}i=1,...,n

d
= {Y (si/ti + p/q)− Y (p/q)}i=1,...,n.

(3.12)

Finally, as it is proved in [9] that every ss-si process with H > 0 is stochastically
continuous, the distribution on Q+ uniquely extends to the distribution on [0,∞). The
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self-similarity and the stationarity of the increments are naturally inherited. Thus,
we conclude that any dt-ss-si process with b(n) = nH , H > 0 determines a unique
in distribution ss-si process, which has the same distribution on N0 as the dt-ss-si
process.

The following proposition collects several basic properties for dt-ss-si processes of
type III. They are direct consequences of Theorem 3.9 and the corresponding results in
continuous-time, which we cite individually.

Proposition 3.10. Let {Xn}n∈N0 be a dt-ss-si process of type III with b(n) = nH , H > 0,
then

1. [2] X0 = 0 almost surely.

2. [4] For m,n ∈ N0, m 6= n, P(Xm = Xn) = P(Xm = Xn = 0) = P(Xi = 0, i ∈ N0).

3. [4] If H 6= 1, then X1 has no atom except possibly at zero.

4. [2] If 0 < H < 1 and E(|X1|) <∞, then E(Xn) = 0 for all n ∈ N0.

5. [7] If E(|X1|γ) <∞, 0 < H < 1/γ for 0 < γ < 1 and 0 < H ≤ 1 for γ ≥ 1.

6. [7] If E(X2
1 ) <∞, then

Cov(Xn, Xm) =
1

2
(n2H +m2H − |n−m|2H)Var(X1).

More interestingly, for the dt-ss-si processes of type II, which do not find their
counterparts in continuous-time, we have

Proposition 3.11. Let {Xn}n∈N0
be a dt-ss-si process of type II with b(n) = (|n|p)H for

some H > 0, then:

1. X0 = 0 almost surely.

2. {Xn}n∈N0
is recurrent, in the sense that each Xn is a limit point of {Xn}n∈N0

almost surely.

3. X1
d
= −X1. Consequently, E(|X1|) <∞ implies E(Xn) = 0 for all n ∈ N0.

4. For m,n ∈ N0, m 6= n, P(Xm = Xn) = P(Xm = Xn = 0) = P(Xi = 0, i ∈ N0).

5. X1 has no atom except possibly at zero.

6. Let a = sup{x ≥ 0 : P(|X1| < x) = 0} and b = inf{x > 0 : P(|X1| > x) = 0}, then
b ≥ (1 + 2p−H)a.

7. If E(X2
1 ) <∞, then for any m,n ∈ N0,

Cov(Xn, Xm) =
1

2

(
(|n|p)2H + (|m|p)2H − (|n−m|p)2H

)
Var(X1).

Proof. (1) and (2) are trivial from definition. For (3), note that by the stationarity of the
increments, for any n ∈ N,

X1
d
= Xpn −Xpn−1.

Since Xpn
d
= p−nHX1, H > 0, Xpn tends to 0 in distribution, and hence in probability, as

n tends to infinity. We thus have Xpn−1
d⇒ −X1. However, since b(pn − 1) = 1, Xpn−1 has

the same distribution as X1. Combining these two results gives X1
d
= −X1.

(4) We have for m,n ∈ N0 and any M > 0,

P(Xm = Xn 6= 0) ≤ P(0 < |Xm| < M) + P(|Xn| ≥M)

= P(0 < |Xm| < M) + P(|X1| ≥Mb(n)−1)
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thus equation (14) in [4] can be replaced by

lim
n→∞

P(Xm = Xpn 6= 0) = 0.

The rest of the proof follows in the same way as in the proof of Lemma 3 of [4].
(5) Suppose P(X1 = x) = p > 0 for some x 6= 0. Choose ε > 0 such that P(X1 ∈

(x− ε, x+ ε) \ {x}) < p/2. Choose n large enough such that P(|Xpn | ≥ ε) < p/2, then

p = P(X1 = x)

= P(X1 = x, |Xpn+1 −X1| ≥ ε) + P(X1 = x, |Xpn+1 −X1| = 0)

+ P(X1 = x, 0 < |Xpn+1 −X1| < ε)

≤ P(|Xpn+1 −X1| ≥ ε) + P(Xpn+1 = X1 6= 0)

+ P(X1 = x, Xpn+1 ∈ (x− ε, x+ ε) \ {x}).

The second term in the last expression is 0 by property (4), hence

p ≤ P(|Xpn+1 −X1| ≥ ε) + P(Xpn+1 ∈ (x− ε, x+ ε) \ {x})
= P(|Xpn | ≥ ε) + P(X1 ∈ (x− ε, x+ ε) \ {x})
< p/2 + p/2 = p,

which gives a contradiction. Hence X1 does not have any atom except for 0.
(6) Let c := p−H . Suppose b < (1 + 2c)a, then logc(

b−a
b ) − logc(

2a
b ) > 1. So there

exists n ∈ N satisfying b − a < cnb < 2a. Note that there exist X,Y, Z such that

Y/cn
d
= X

d
= Z

d
= X1, Y = Z +X. We have

P(X > 0, Z > 0) = P(X > a,Z > a) ≤ P(Y > 2a) ≤ P(c−nY > b) = 0.

Symmetrically, P(X < 0, Z < 0) = 0. Meanwhile,

P(|X| > c−n(b− a)) = P(|Y | > b− a) = P(|X + Z| > b− a).

However, by the definition of a and b, |X + Z| > b − a implies that almost surely,
X > 0, Z > 0 or X < 0, Z < 0. As a result, P(|X| > c−n(b − a)) = 0, contradicting the
choice of b since c−n(b− a) < b.

(7) is trivial by polarization.

4 Examples of dt-ss-si processes of type II

As shown in the previous section, the dt-ss-si processes can be classified into three
types. Type I is degenerate and type III has continuous-time counterparts. Type II, for
which b(n) = (|n|p)H , only exists in the discrete-time setting and is, therefore, of special
interest. Sections 4 and 5 are mainly dedicated to the study of this type. In this section,
we give two classes of examples for dt-ss-si processes of type II.

Example 4.1. Let p ∈ P and 0 < c < 1. Let {Y kn }k∈N0, 0≤n≤pk+1−1 be a triangular array
of independent and identically distributed random variables having any non-degenerate
distribution such that E(|Y 0

0 −Y 1
0 |q) <∞ for some q > 0. Sufficient conditions for this can

be Y 0
0 ∈ L1(Ω,F ,P), or Y 0

0 is α-stable with 0 < α ≤ 2. For each k, extend the sequence
{Y kn }0≤n≤pk+1−1 periodically with period pk+1 to {Y kn }n∈N0

by defining Y k` = Y kn for ` ≡ n
(mod pk+1). Define

Xn =

∞∑
k=0

ck(Y kn − Y k0 ), n ∈ N0. (4.1)
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It is easy to see that the above summation converges almost surely for any n ∈ N0, thus
{Xn}n∈N0

is well-defined. Indeed,

∞∑
k=0

E(|ck(Y kn − Y k0 )|q) = E(|Y 0
0 − Y 1

0 |q)
∞∑
k=0

cqk <∞.

{Xn}n∈N0 is a dt-ss-si process of type II. We show this in the following proposition.

Proposition 4.2. The process {Xn}n∈N0
given in (4.1) is dt-ss-si with scaling function

b(n) = (|n|p)H , where H = − logp(c).

Proof. We first show that {Xqn}n∈N0

d
= {Xn}n∈N0

for q ∈ P, q 6= p. Note that for any fixed
k ∈ N0, by the periodicity of Y kn , {Y kqn}0≤n≤pk+1−1 is just a permutation of {Y kn }0≤n≤pk+1−1,
hence also a sequence of independent and identically distributed random variables.
Moreover, both {Y kn }n∈N0

and {Y kqn}n∈N0
have period pk+1 with respect to n. Thus,

{Y kqn}n∈N0

d
= {Y kn }n∈N0

,

which clearly implies

{Y kqn − Y k0 }n∈N0

d
= {Y kn − Y k0 }n∈N0

.

Since the sequences with different values of k are independent,{ ∞∑
k=0

ck(Y kqn − Y k0 )

}
n∈N0

d
=

{ ∞∑
k=0

ck(Y kn − Y k0 )

}
n∈N0

,

i.e., {Xqn}n∈N0

d
= {Xn}n∈N0 .

To show {Xpn}n∈N0

d
= {cXn}n∈N0

, note that by independence,

{Y kn }0≤n≤pk+1−1
d
= {Y k+1

pn }0≤n≤pk+1−1.

Since both {Y kn }n∈N0
and {Y k+1

pn }n∈N0
have the same period pk+1,

{Y kn }n∈N0

d
= {Y k+1

pn }n∈N0
,

hence
{Y kn − Y k0 }n∈N0

d
= {Y k+1

pn − Y k+1
0 }n∈N0 .

As the components with different values of k are independent, we have{ ∞∑
k=0

ck(Y kn − Y k0 )

}
n∈N0

d
=

{ ∞∑
k=0

ck(Y k+1
np − Y k+1

0 )

}
n∈N0

=

{
c−1

∞∑
k=0

ck+1(Y k+1
np − Y k+1

0 )

}
n∈N0

=

{
c−1

∞∑
k=0

ck(Y knp − Y k0 )

}
n∈N0

,

where the last equality follows from Y 0
np = Y 0

0 , n ∈ N0. Therefore, according to (4.1), we

have {Xpn}n∈N0

d
= {cXn}n∈N0 .

Finally, to show the stationarity of the increments, note that the process {Y kn }n∈N0

is stationary, so {Y kn − Y k0 }n∈N0
has stationary increments for all k ∈ N0. Again by the

independence of the components with different values of k, {Xn}n∈N0
has stationary

increments.
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Remark 4.3. When Y 0
0 follows a Gaussian distribution, {Xn}n∈N0

is a Gaussian process
with covariance function specified in Proposition 3.11, property (7).

Remark 4.4. Example 4.1 answers several questions for which the continuous-time
counterparts are still open. For instance, as mentioned in [4] and [9], it is not clear
whether for a continuous-time ss-si processes with 0 < H < 1, denoted by {X(t)}t≥0,
the support of X(1) must be unbounded. By Example 4.1, we know this is not true for
dt-ss-si processes of type II when the support of Y 0

0 is bounded.
Another open problem raised in [4] asks whether the distribution of X(1) must be

absolutely continuous on R \ {0} when H > 0 and H 6= 1. The answer is also negative for
our dt-ss-si process of type II. It is easy to see that Xn can be expressed in the form

Xn =

∞∑
k=0

ckX(k)
n

where {X(k)
n }k∈N0

is a sequence of independent and identically distributed random
variables. When the support of Y 0

0 is finite, this corresponds to a generalization of the
Bernoulli convolution in [5]. When c is a reciprocal of a Pisot number in a certain interval,
the distribution of Xn will be singular. This is also the case when c is close enough to 0,
where the support of Xn is a Cantor-type set, again provided that the support of Y 0

0 is
finite.

Example 4.5. Fix p ∈ P, c ∈ (0, 1). Let u be a p-dimensional random vector whose
entries u0, . . . , up−1 sum up to 0. For k ∈ N0, let {Vk(n)}n∈N0 be the stochastic process
given by

Vk(n) :=

{
0 if pk - n
us if s ∈ {0, . . . , p− 1} and n ≡ spk (mod pk+1).

Let {U jk}k∈N0,1≤j≤pk+1−1 be a triangular array of independent random variables such that

U jk is uniformly distributed on {0, 1, . . . , pk+1−1}, and {U jk}k∈N0,1≤j≤pk+1−1 is independent
of u. For each k ∈ N0, 1 ≤ j ≤ pk+1 − 1, define

Y jk (n) := Vk(n+ U jk), n ∈ N0.

It is easy to see that {Y jk (n)}n∈N0
is stationary, has period pk+1, and the sum in each

period is zero since the sum of the entries of u is zero. Moreover, these stationary
sequences are independent conditional on u by the independence of {U jk}k∈N0,1≤j≤pk+1−1.
For j = 1, 2, . . . , pk+1 − 1, define

Yk,j(n) =

jn∑
m=j(n−1)+1

Y jk (m), n ∈ N,

which has period pk+1 and the sum in each period is again zero. Let {Jk}k∈N0 be another
sequence of independent uniform random variables on {0, 1, . . . , pk+1 − 1}, independent
of u and {U jk}k∈N0,1≤j≤pk+1−1. Finally, define the random sequence

Xn :=

∞∑
k=0

ck
n∑
`=1

pk+1−1∑
j=1

1{Jk=j}Yk,j(`) =

∞∑
k=0

ck
pk+1−1∑
j=1

1{Jk=j}

jn∑
m=1

Y jk (m) (4.2)

for n ∈ N0, which converges almost surely since 0 < c < 1. Note that if u is bounded,
then Xn is bounded uniformly in n.

EJP 26 (2021), paper 117.
Page 11/24

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP689
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On discrete-time self-similar processes with stationary increments

Proposition 4.6. The process {Xn}n∈N0
given in (4.2) is dt-ss-si with scaling function

b(n) = (|n|p)H , where H = − logp(c).

Proof. Since the mixture of dt-ss-si processes with a common scaling function is again a
dt-ss-si process, it suffices to prove the result for the case where u is deterministic.

The stationarity of the increments of {Xn}n∈N0
follows directly from the stationarity

of {Y jk (n)}n∈N0 hence also of {Yk,j(n)}n∈N0 , and the independence of the sequences with
different values of k and j.

In order to show the self-similarity, first note that for q ∈ P \ {p}, k ∈ N0, n ∈ N and
1 ≤ j ≤ pk+1 − 1,

qn∑
`=q(n−1)+1

Yk,j(`) =

jqn∑
m=jq(n−1)+1

Y jk (m) = Yk,[qj](n),

where [qj] is the residue of qj modulo pk+1. Since {j ∈ N : 1 ≤ j ≤ pk+1 − 1} = {[qj] ∈
N : 1 ≤ j ≤ pk+1 − 1}, we have

pk+1−1∑
j=1

qn∑
`=1

1{Jk=j}Yk,j(`)


n∈N0

=


pk+1−1∑
j=1

1{Jk=j}

n∑
i=1

qi∑
`=q(i−1)+1

Yk,j(`)


n∈N0

=


pk+1−1∑
j=1

1{Jk=j}

n∑
i=1

Yk,[qj](i)


n∈N0

d
=


pk+1−1∑
[qj]=1

n∑
i=1

1{Jk=[qj]}Yk,[qj](i)


n∈N0

,

where the last equality in distribution follows from the fact that Jk is uniformly distributed
and is independent of everything else. Since the components with different values of k
are independent, we must have

{Xqn}n∈N0

d
= {Xn}n∈N0

.

For {Xpn}n∈N0 , note that by the construction of Vk, for any i ∈ N0,

i+p∑
m=i+1

Vk(m) = Vk−1

(⌊
i

p

⌋
+ 1

)
,

where “b·c” gives the largest integer which is smaller than or equal to the variable.
Hence

pn∑
`=p(n−1)+1

Yk,j(`) =

jpn∑
m=jp(n−1)+1

Y jk (m) =

jpn∑
m=jp(n−1)+1

Vk(m+ U jk)

=

j−1∑
i=0

Vk−1

(⌊
p(j(n− 1) + i) + U jk

p

⌋
+ 1

)

=

j−1∑
i=0

Vk−1

(⌊
U jk
p

⌋
+ j(n− 1) + i+ 1

)
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=

[j]n∑
m=[j](n−1)+1

Vk−1

(
m+

⌊
U jk
p

⌋)
,

where [j] is the residue of j modulo pk, and the last equality follows from the periodicity
of Vk−1.

On the other hand,

Yk−1,[j](n) =

[j]n∑
m=[j](n−1)+1

Y
[j]
k−1(m) =

[j]n∑
m=[j](n−1)+1

Vk−1(m+ U
[j]
k−1).

Since U jk is uniformly distributed on {0, 1, . . . , pk+1− 1},
⌊
Uj

k

p

⌋
is uniformly distributed

on {0, 1, . . . , pk − 1}. Thus, we have
pn∑

`=p(n−1)+1

Yk,j(`)


n∈N

d
= {Yk−1,[j](n)}n∈N.

Moreover, because Jk is uniformly distributed on {0, . . . , pk+1 − 1}, [Jk] is uniformly
distributed on {0, . . . , pk − 1}, where [Jk] is the residue of Jk modulo pk. Hence by the
independence of U jk with different values of k and j,

pk+1−1∑
j=1

1{Jk=j}

pn∑
m=1

Yk,j(m)


n∈N

d
=


pk−1∑
j=1

1{Jk−1=j}

n∑
`=1

Yk−1,j(`)


n∈N

.

Again by independence, a change of index k′ = k − 1 leads to

{Xpn}n∈N0 =

∞∑
k=0

ck
pk+1−1∑
j=1

1{Jk=j}

pn∑
m=1

Yk,j(m)

d
= c

∞∑
k′=0

ck
′
pk
′+1−1∑
j=1

1{Jk′=j}

n∑
`=1

Yk′,j(`)

= c{Xn}n∈N0 ,

where the term with k = 0 on the right hand side of the first line can be dropped since
Y0,j has period p and the entries in one period have sum 0.

Therefore, {Xn}n∈N0 is dt-ss-si with scaling function given by b(p) = c and b(q) = 1

for all q ∈ P, q 6= p.

Remark 4.7. In the case where u is deterministic and has finite support, one can show
that the distribution of Xn is also a generalized Bernoulli convolution. That is, when
denoting

X(k)
n :=

pk+1−1∑
j=1

1{Jk=j}

jn∑
m=1

Y jk (m),

we have that for fixed n, X(k)
n , k ∈ N0 are independent and identically distributed. One

can also prove that the class of marginal distributions given here belongs to the class
given in Example 4.1, by making Y 0

0 follow the same distribution as
∑J0
k=0 uk. However,

the joint distributions will differ when p > 2 unless in certain trivial cases, which is
not hard to see from the dependence structures of {X(k)

n }1≤n≤p−1. The proof is purely
combinatorial and omitted here.
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Remark 4.8. In Example 4.5 the processes {Y jk (n)}n∈N0
with different values of k and j

share a common u. Following the same derivation as in the proof of Proposition 4.6, one
can easily see that the result will still hold if u is replaced by a sequence of independent
copies of it, {uk}k∈N0

, as long as the summation in (4.2) converges. For such processes,
{Y jk (n)}n∈N0

with different values of k are independent, while in Example 4.5 they are
conditionally independent given u. In fact, in light of the de Finetti’s theorem, the result
can be further extended to exchangeable sequences {uk}k∈N0

satisfying
∑p−1
s=0 u

1
s = 0.

This can be checked again by going through the original proof and replacing u by the
exchangeable sequence.

5 Spectral representation

Let {Xn}n∈N0
be a dt-ss-si process of type II, with scaling function b(n) = (|n|p)H for

H > 0. Intuitively, since b(pi) = (b(p))i → 0 as i → ∞, the distribution of Xp, Xp2 , . . .

will be more and more concentrated around 0. By the stationarity of the increments,
this implies that Xn+pi −Xn is small when i is large. Such an observation leads to the
following spectral representation result.

Here and later, we use the notation e(x) = ei2πx.

Theorem 5.1. Let p ∈ P, {Xn}n∈N0
be a stochastic process satisfying E(|X1|2) < ∞.

Then {Xn}n∈N0
is dt-ss-si of type II with the scaling function b(n) = (|n|p)H , H > 0 if and

only if

Xn =

∞∑
m=1

∑
0<`<pm, p-`

A
(m)
`

(
e

(
n`

pm

)
− 1

)
, n ∈ N0

in the sense of convergence in L2(Ω,F ,P), where {A(m)
` }m∈N,0<`<pm,p-` is an orthogonal

sequence in L2(Ω,F ,P) and satisfies:

1.

{A(m)
` }m∈N,0<`<pm,p-`

d
=

{
e

(
`

pm

)
A

(m)
`

}
m∈N,0<`<pm,p-`

;

2. for q ∈ P, q 6= p,

{A(m)
` }m∈N,0<`<pm,p-`

d
= {A(m)

[q`] }m∈N,0<`<pm,p-`,

where [q`] is the residue of q` modulo pm;

3.

{p−HA(m)
` }m∈N,0<`<pm,p-`

d
=

{
p−1∑
t=0

A
(m+1)
tpm+`

}
m∈N,0<`<pm,p-`

.

Remark 5.2. Like other spectral representation results, Theorem 5.1 decomposes a
dt-ss-si process of type II into waves with different frequencies. It further tells which fre-
quencies will contribute in this case. Moreover, the components with these frequencies
form different “layers” indexed by m. The three properties listed in the theorem then
gives more information about the weights A(m)

` of these components. Intuitively, the first

condition is a rotational invariance for the distribution of each A(m)
` , putting a constraint

on the marginal distribution of the weights. The second condition describes a symmetry
among the weights for the components in the same layer. Finally, the third condition
deals with components in different layers, and shows that layers are stacked together in
a geometric way.
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Remark 5.3. We note that a rewriting of this representation gives the following spectral
representation of the increment process {Xn+1 −Xn}n∈N0

.

Xn+1 −Xn =

∞∑
m=1

∑
0<`<pm, p-`

A
(m)
`

(
e

(
(n+ 1)`

pm

)
− e

(
n`

pm

))

=

∞∑
m=1

∑
0<`<pm, p-`

A
(m)
`

(
e

(
`

pm

)
− 1

)
e

(
n`

pm

)

=

∫ 2π

0

einωdZ(ω),

where Z is a process with orthogonal increments concentrating on 2π times the p-adic
rationals:

∆Z(ω) := Z(ω)− Z(ω−) = A
(m)
`

(
e

(
`

pm

)
− 1

)
, for ω = 2π`/pm.

Meanwhile, since X has stationary increments, {Xn+1 − Xn}n∈N0
is stationary. The

general spectral representation result for stationary processes leads to Xn+1 −Xn =∫ 2π

0
einωdZ(ω), where the only thing that we know about the process Z is that it is of

orthogonal increments. Comparing these two results, we see that all the special features
of Z, including the location of its jumps and the distributional properties of the jump
size, come from the additional structure of self-similarity.

Remark 5.4. It should also be pointed out that the consequences of Theorem 5.1 are
two-directional. While it mainly serves as a representation result, it also provides a
unified way to obtain a set of orthogonal random variables {A(m)

l } satisfying the three
conditions listed in the theorem. Such random variables are not easy to construct directly
except for independent Gaussian and other independent stable cases.

As an immediate consequence of Theorem 5.1, a law of large numbers holds for
dt-ss-si processes of type II. Its proof relies on a result that we are going to introduce in
the process of proving the theorem.

Corollary 5.5. Let {Xn}n∈N0
be a dt-ss-si process of type II satisfying E(X2

1 ) <∞. Then
there exists a random variable A ∈ L2(Ω,F ,P), such that

1

n

n∑
k=1

Xk
L2

→ A, as n→∞.

Proof. Take λ1 = 0 and set A = A1 in (5.2). Indeed, by (5.6) that will be proved later, we
also have A = −

∑∞
m=1

∑
0<`<pm,p-`A

(m)
` in terms of the coefficients in Theorem (5.1).

Many results are needed for the proof of Theorem 5.1. We start by introducing the
notion of almost periodic functions with values in Banach spaces, which can be found,
for example, in [1].

Definition 5.6. Let (X, ‖·‖) be a Banach space. A sequence f : Z→ X is almost periodic
if for all ε > 0, there exists N(ε) > 0, such that any consecutive N(ε) integers contain an
integer T with

‖f(n+ T )− f(n)‖ < ε, for all n ∈ Z.

Let {Xn}n∈N0
be a dt-ss-si process of type II. By the stationarity of the increments,

{Yn := Xn+1 −Xn}n∈N0
is a stationary process. Kolmogorov’s extension theorem allows

us to extend this sequence to Z while keeping the stationarity. That is, there exists a
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stationary process {Y ′n}n∈Z, such that {Y ′n}n∈N0

d
= {Yn}n∈N0 . Define

X ′n =

{∑n−1
i=0 Y

′
i n ≥ 0,

−
∑−1
i=−n Y

′
i n < 0,

then {X ′n}n∈Z is clearly a dt-ss-si process on Z, in the sense that it is of stationary
increments, and for any n ∈ N, there exists b(n) > 0, such that

{X ′nm}m∈Z
d
= {b(n)X ′m}m∈Z.

Since {X ′n}n∈N0

d
= {Xn}n∈N0

, {X ′n}n∈Z is an extension of {Xn}n∈N0
on Z. Moreover, by

the stationarity of the increments, {X ′n}n∈Z is an almost periodic sequence in L2(Ω,F ,P)

if {Xn}n∈N0
is in L2(Ω,F ,P).

Proposition 5.7. Let {Xn}n∈N0
be a dt-ss-si process of type II satisfying E(X2

1 ) < ∞.
Then it has an extension on Z, denoted by {X ′n}n∈Z, which is an almost periodic sequence
in L2(Ω,F ,P).

Proof. Let {X ′n}n∈Z be the extension of {Xn}n∈N0
on Z given in the paragraph above

Proposition 5.7. For any ε > 0, take

N(ε) = p

⌈
− 1

2H logp

(
ε

E(X2
1)

)⌉
,

where d·e is the smallest integer which is larger than or equal to the argument. Then,
every consecutive N(ε) integers include a number τ satisfying N(ε)|τ . We now have

sup
n∈N

E(|X ′n+τ −X ′n|2) = E((Xτ )2) ≤ p
−2H

⌈
− 1

2H logp

(
ε

E(X2
1)

)⌉
E(X2

1 ) ≤ ε.

We call a stochastic process in L2(Ω,F ,P) with index set N0 an almost periodic
process, if it has an extension on Z which is almost periodic in L2(Ω,F ,P).

By [1] (Sections 6.3, 1.3), we can associate an almost periodic sequence in L2(Ω,F ,P),
hence also {Xn}n∈N0

, with a Fourier series:

Xn ∼
∞∑
k=1

Ake(nλk), n ∈ N0 (5.1)

for some countable set of real numbers {λk}∞k=1. {Ak}k∈N ⊂ L2(Ω,F ,P) is given by

Ak = lim
N→∞

1

N

N∑
n=1

Xne(−nλk), k ∈ N (5.2)

in L2(Ω,F ,P). If moreover, the right hand side of (5.1) is uniformly convergent in
L2(Ω,F ,P), then

Xn =

∞∑
k=1

Ake(nλk), n ∈ N0,

where the infinite sum is in the sense of L2(Ω,F ,P). We do not have the convergence at
this moment, but will establish it using the properties of the process {Xn}n∈N0

.
The following lemma shows that the coefficient Ak can be nonzero only if the corre-

sponding λk is a p-adic rational.

EJP 26 (2021), paper 117.
Page 16/24

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP689
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Lemma 5.8. Let {Xn}n∈N0
be a dt-ss-si process of type II satisfying E(X2

1 ) <∞, then

Xn ∼
∞∑
k=1

Ake(nλk), n ∈ N0,

where {Ak}k∈N ⊂ L2(Ω,F ,P) and {λk}k∈N is the set of p-adic rationals in [0, 1).

Proof. It suffices to show Ak = 0 in (5.1) for λk not of the form `p−m where ` ∈ N0,m ∈ N.
Let λ ∈ R be such that pmλ is not an integer for any m ∈ N. Using (5.2), for every m ∈ N,
the coefficient corresponding to λ, denoted by a(λ), satisfies

E
(
|a(λ)|2

)
= lim
N→∞

E

∣∣∣∣∣ 1

Npm

Npm∑
n=1

Xne(−nλ)

∣∣∣∣∣
2 .

By Cauchy-Schwarz inequality,

E

∣∣∣∣∣
Npm∑
n=1

Xne(−nλ)

∣∣∣∣∣
2

=E


∣∣∣∣∣∣
pm∑
j=1

N−1∑
k=0

e(−(kpm + j)λ)Xj +

pm∑
j=1

N−1∑
k=1

e(−(kpm + j)λ)(Xkpm+j −Xj)

∣∣∣∣∣∣
2


≤Npm
pm∑
j=1

E

∣∣∣∣∣
N−1∑
k=0

e(−(kpm + j)λ)Xj

∣∣∣∣∣
2


+Npm
pm∑
j=1

N−1∑
k=1

E
(
|e(−(kpm + j)λ)(Xkpm+j −Xj)|2

)

=Npm

 pm∑
j=1

∣∣∣∣∣
N−1∑
k=0

e(−(kpm + j)λ)

∣∣∣∣∣
2

E(X2
j ) +

pm∑
j=1

N−1∑
k=1

E((Xkpm+j −Xj)
2)


≤Np2m

∣∣∣∣∣
N−1∑
k=0

e(−(kpm + j)λ)

∣∣∣∣∣
2

max
1≤j≤pm

E(X2
j ) +Npm

pm∑
j=1

N−1∑
k=1

p−2mHE(X2
1 )

≤Np2m

∣∣∣∣∣
N−1∑
k=0

e(−(kpm + j)λ)

∣∣∣∣∣
2

max
1≤j≤pm

E(X2
j ) +N2p2mp−2mHE(X2

1 ).

Hence

E
(
|a(λ)|2

)
≤ E(X2

1 ) lim
N→∞

∣∣∣∣∣ 1√
N

N−1∑
k=0

e(−(kpm + j)λ)

∣∣∣∣∣
2

+ E(X2
1 )p−2mH .

As pmλ is not an integer, it is easy to see that∣∣∣∣∣ 1√
N

N−1∑
k=0

e(−(kpm + j)λ)

∣∣∣∣∣ =

∣∣∣∣ 1√
N

e(−jλ)− e(−(Npm + j)λ)

1− e(−pmλ)

∣∣∣∣
≤ 2√

N

∣∣∣∣ 1

1− e(−pmλ)

∣∣∣∣ ,
which converges to 0 as N →∞. Therefore

E
(
|a(λ)|2

)
≤ p−2mHE(X2

1 ).
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Since this holds for all m ∈ N, letting m→∞ leads to the conclusion that Ak can only
be non-zero if the corresponding λk is a p-adic rational. Finally, since e(x) has period 1,
{e(nλ)}n∈N0

= {e(n(λ+ 1))}n∈N0
. Hence we only need p-adic rationals in [0, 1).

Remark 5.9. The above lemma also holds in L1(Ω) if E(|X1|) <∞. The proof is essen-
tially the same by replacing the Cauchy-Schwarz inequality by the triangle inequality.
For simplicity, we only consider the L2 case. Also note that for L1 \ L2, the convergence
of the associated Fourier series is not guaranteed, hence although still valid, the result
of Lemma 5.8 becomes less important.

Lemma 5.8 allows us to further explore the detailed impact of the stationarity of the
increments and the self-similarity of the process to the representation (5.1). We start
from the following simple observation about the increment process.

Lemma 5.10. Let {Xn}n∈N0 be a dt-ss-si process of type II satisfying E(X2
1 ) <∞ and

Xn ∼
∞∑
k=1

Ake(nλk), n ∈ N0.

Then its increment process {X̃n}n∈N0 , given by

X̃n = Xn+1 −Xn, n ∈ N0,

is almost periodic in L2(Ω,F ,P) and stationary. Moreover,

X̃n ∼
∞∑
k=1

Ãke(nλk), n ∈ N0,

where Ãk = Ak(e(λk)− 1).

Proof. The stationarity is trivial, and the almost periodicity follows directly from

E(|(Xpm+n+1 −Xpm+n)− (Xn+1 −Xn)|2)

≤ 2(E(|Xpm+n+1 −Xn+1|2) + E(|Xpm+n −Xn|2)).

The representation is obvious from (5.2) and the relation X̃n = Xn+1 −Xn.

As a consequence of Lemmas 5.8 and 5.10, the increment process {X̃n}n∈N0
is

associated with the Fourier series∑
m∈N

∑
0<`<pm, p-`

Ã
(m)
` e

(
n`

pm

)
.

Intuitively, the original single summation in Lemma 5.10 can be divided into different
layers according to the p-adic norm of λk. Based on this decomposition, the stationarity of
{X̃n}n∈N0

implies a rotation-invariant property of the coefficients {Ã(m)
` }m∈N,0<`<pm,p-`,

which further implies the orthogonality.

Lemma 5.11. Let {Yn}n∈N0
be an almost periodic process in L2(Ω,F ,P) such that

Yn ∼
∑
m∈N

∑
0<`<pm, p-`

Ã
(m)
` e

(
n`

pm

)
, n ∈ N0.

If {Yn}n∈N0 is stationary, then{
Ã

(m)
`

}
m∈N,0<`<pm,p-`

d
=

{
e

(
`

pm

)
Ã

(m)
`

}
m∈N,0<`<pm,p-`

, (5.3)

in particular, {Ã(m)
` }m∈N,0<`<pm,p-` is an orthogonal sequence in L2(Ω,F ,P).
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Proof. Assume {Yn}n∈N0
is stationary. Since the process {Yn+1}n∈N0

is also almost
periodic and in L2(Ω,F ,P), it is associated with a Fourier series as well. The coefficient
A′k corresponding to λk is given by

A′k = lim
N→∞

1

N

N∑
n=1

Yn+1e(−nλk)

= lim
N→∞

1

N

N+1∑
n=2

Yne(−(n− 1)λk)

= e(λk)Ak.

As {Yn}n∈N0

d
= {Yn+1}n∈N0

, by the uniqueness of the associated Fourier series, the
coefficients of the corresponding terms must also have the same distribution. Hence
(5.3) holds.

Furthermore, for i = 1, 2, let mi ∈ N, `i be such that 0 < `i < pmi and p - `i. If
(m1, `1) 6= (m2, `2), then

pm1∨m2−1∑
k=0

e

(
k`1
pm1
− k`2
pm2

)
= 0.

Hence by the rotation-invariance that we just proved,

0 = E

pm1∨m2−1∑
k=0

e

(
k`1
pm1

)
Ã

(m1)
`1

e

(
k`2
pm2

)
Ã

(m2)
`2


= pm1∨m2E

(
Ã

(m1)
`1

Ã
(m2)
`2

)
.

Thus, Ã(m1)
`1

and Ã(m2)
`2

are orthogonal.

Lemma 5.8 also allows us to directly rewrite the representation (5.1) as

Xn ∼ A1 +

∞∑
m=1

∑
0<`<pm,p-`

A
(m)
` e

(
n`

pm

)
, n ∈ N0,

where A1 is the coefficient corresponding to λ1 = 0, i.e., the constant term. As a result,
Lemma 5.11 has the following simple corollary for processes with stationary increments.

Corollary 5.12. Let {Xn}n∈N0
be an almost periodic process in L2(Ω,F ,P) with the

representation

Xn ∼ A1 +

∞∑
m=1

∑
0<`<pm,p-`

A
(m)
` e

(
n`

pm

)
, n ∈ N0.

If {Xn}n∈N0
has stationary increments, then{

A
(m)
`

}
m∈N,0<`<pm,p-`

d
=

{
e

(
`

pm

)
A

(m)
`

}
m∈N,0<`<pm,p-`

, (5.4)

in particular,
{
A

(m)
`

}
m∈N,0<`<pm,p-`

is an orthogonal sequence in L2(Ω,F ,P).

The proof of this corollary is trivial by noticing that A(m)
` and Ã(m)

` are different only
by a deterministic multiplicative factor.

We have seen how the stationarity of the increments has an impact on the coefficients
for the increment process and therefore, also on the coefficients for the original process.
Next, we discuss an impact of the self-similarity to the coefficients in the representation.
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Lemma 5.13. Let {Xn}n∈N0
be an almost periodic process with E(X2

1 ) < ∞ and the
representation

Xn ∼ A1 +

∞∑
m=1

∑
0<`<pm,p-`

A
(m)
` e

(
n`

pm

)
, n ∈ N0.

If {Xn}n∈N0 is discrete-time self-similar with scaling function b(n) = (|n|p)H , H > 0, then

{
p−HA

(m)
`

}
m∈N,0<`<pm,p-`

d
=

{
p−1∑
t=0

A
(m+1)
tpm+`

}
m∈N,0<`<pm,p-`

. (5.5)

Proof. For any m ∈ N and ` satisfying 0 < ` < pm, p - `,

p−1∑
t=0

A
(m+1)
tpm+`

= lim
N→∞

1

Npm+1

p−1∑
t=0

Npm+1∑
n=1

e

(
−n(tpm + `)

pm+1

)
Xn

= lim
N→∞

1

Npm+1

p−1∑
t=0

N−1∑
k=0

pm+1∑
j=1

e

(
− (kpm+1 + j)(tpm + `)

pm+1

)
Xkpm+1+j

= lim
N→∞

1

Npm+1

pm+1∑
j=1

p−1∑
t=0

e

(
−j(tp

m + `)

pm+1

)N−1∑
k=0

Xkpm+1+j .

Note that the summation
p−1∑
t=0

e

(
−j(tp

m + `)

pm+1

)
is non-zero only if p|j, in which case it takes value pe

(
− j`
pm+1

)
. Therefore, by letting

j′ = j/p, we have

p−1∑
t=0

A
(m+1)
tpm+` = lim

N→∞

1

Npm

pm∑
j′=1

e

(
− j
′`

pm

)N−1∑
k=0

Xkpm+1+pj′ .

Recall that
{Xpn}n∈N0

d
= p−H{Xn}n∈N0

,

hence {
p−1∑
t=0

A
(m+1)
tpm+`

}
m∈N,0<`<pm,p-`

d
=

 lim
N→∞

p−H

Npm

pm∑
j′=1

e

(
− j
′`

pm

)N−1∑
k=0

Xkpm+j′


m∈N,0<`<pm,p-`

=

p−H lim
N→∞

1

Npm

N−1∑
k=0

pm∑
j′=1

e

(
− (kpm + j′)`

pm

)
Xkpm+j′


m∈N,0<`<pm,p-`

=
{
p−HA

(m)
`

}
m∈N,0<`<pm,p-`

.

Corollary 5.12 and Lemma 5.13 together guarantee a very important result: the con-
vergence of the Fourier series associated with a dt-ss-si process of type II in L2(Ω,F ,P).
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Proposition 5.14. Let {A(m)
` }m∈N,0<`<pm,p-` be an orthogonal sequence in L2(Ω,F ,P)

satisfying (5.5). Then the Fourier series

∞∑
m=1

∑
0<`<pm, p-`

A
(m)
` e

(
n`

pm

)
converges uniformly in L2(Ω,F ,P).

Proof. Orthogonality implies that

E


∣∣∣∣∣∣

N∑
m=M

∑
0<`<pm, p-`

A
(m)
` e

(
n`

pm

)∣∣∣∣∣∣
2
 =

N∑
m=M

∑
0<`<pm, p-`

E(|A(m)
` |2).

On the other hand, (5.5), together with the orthogonality, also gives

∑
0<`<pm+1, p-`

E(|A(m+1)
` |2) =

pm∑
`=1

1p-`

p−1∑
t=0

E(|A(m+1)
tpm+`|

2)

=

pm∑
`=1

1p-`E(|
p−1∑
t=0

A
(m+1)
tpm+`|

2)

=

pm−1∑
`=1

1p-`p
−2HE(|A(m)

` |2).

Hence by induction,

∑
0<`<pm+1, p-`

E(|A(m+1)
` |2) = p−2mH

p−1∑
`=1

E(|A(1)
` |

2).

Thus,

E


∣∣∣∣∣∣

N∑
m=M

∑
0<`<pm, p-`

A
(m)
` e

(
n`

pm

)∣∣∣∣∣∣
2
 ≤ p−2(M−1)H − p−2NH

p2H − 1

p−1∑
`=1

E(|A(1)
` |

2)

which converges uniformly to 0 as M,N → ∞. Hence the Fourier series converges
uniformly in L2(Ω,F ,P).

As a direct consequence of Proposition 5.14, all the Fourier series discussed in this
section converge and hence are equal to the original sequences. In other words, the
“∼” can be now replaced by “=”. This allows us to easily expand Corollary 5.12 to a
two-directional result.

Proposition 5.15. Let {Xn}n∈N0
be an almost periodic process in L2(Ω,F ,P) with the

representation

Xn = A1 +

∞∑
m=1

∑
0<`<pm,p-`

A
(m)
` e

(
n`

pm

)
, n ∈ N0.

Then {Xn}n∈N0 has stationary increments if and only if (5.4) holds.

Proof. The “only if” part is exactly Corollary 5.12. For the “if” part, note that for the
increment process {X̃n}n∈N0 , we have

X̃n =

∞∑
m=1

∑
0<`<pm, p-`

Ã
(m)
` e

(
n`

pm

)
, n ∈ N0,
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where Ã(m)
` = A

(m)
` (e(`/pm)− 1). Because of the relation between Ã(m)

` and A(m)
` , (5.4)

is equivalent to{
Ã

(m)
`

}
m∈N,0<`<pm,p-`

d
=

{
e

(
`

pm

)
Ã

(m)
`

}
m∈N,0<`<pm,p-`

.

With this condition, it is obvious that

{X̃n}n∈N0

d
=


∞∑
m=1

∑
0<`<pm, p-`

Ã
(m)
` e

(
`

pm

)
e

(
n`

pm

) = {X̃n+1}n∈N0 .

Let {Xn}n∈N0 be a dt-ss-si process of type II with representation

Xn = A1 +

∞∑
m=1

∑
0<`<pm,p-`

A
(m)
` e

(
n`

pm

)
, n ∈ N0.

Since X0 = 0 almost surely, we must have

A1 = −
∞∑
m=1

∑
0<`<pm,p-`

A
(m)
` . (5.6)

Thus, the representation can be rewritten as

Xn =

∞∑
m=1

∑
0<`<pm,p-`

A
(m)
`

(
e

(
n`

pm

)
− 1

)
, n ∈ N0. (5.7)

With Proposition 5.14 and (5.7), Lemma 5.13 also gets a significant extension, which
includes a condition corresponding to the rescaling invariance of the distribution of
{Xn}n∈N0

with factor q ∈ P, q 6= p, as well as the sufficiency of the conditions.

Proposition 5.16. Let {Xn}n∈N0
be an almost periodic process in L2(Ω,F ,P) with the

representation

Xn =

∞∑
m=1

∑
0<`<pm,p-`

A
(m)
`

(
e

(
n`

pm

)
− 1

)
, n ∈ N0.

Then {Xn}n∈N0
is discrete-time self-similar with scaling function b(n) = (|n|p)H for H > 0

if and only if (5.5) holds, and

{A(m)
` }m∈N,0<`<pm,p-`

d
= {A(m)

[q`] }m∈N,0<`<pm,p-`, (5.8)

where [q`] is the residue of q` modulo pm.

Proof. Assume {Xn}n∈N0
is a discrete-time self-similar process with scaling function

b(n) = (|n|p)H for H > 0, then (5.5) holds by Lemma 5.13. Moreover, note that for
n ∈ N0,

Xqn =

∞∑
m=1

∑
0<`<pm,p-`

A
(m)
`

(
e

(
nq`

pm

)
− 1

)

=

∞∑
m=1

∑
0<`<pm,p-`

A
(m)
`

(
e

(
n[q`]

pm

)
− 1

)
.
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On the other hand, since {Xqn}n∈N0

d
= {Xn}n∈N0 , we have

{Xqn}n∈N0

d
=


∞∑
m=1

∑
0<`<pm,p-`

A
(m)
`

(
e

(
n`

pm

)
− 1

)
n∈N0

=


∞∑
m=1

∑
0<`<pm,p-`

A
(m)
[q`]

(
e

(
n[q`]

pm

)
− 1

)
n∈N0

,

where the second equality follows from the simple observation {` : 0 < ` < pm, p - `} =

{[q`] : 0 < ` < pm, p - `}. By the uniqueness of the Fourier expansion, we must have

{A(m)
` }m∈N,0<`<pm,p-`

d
= {A(m)

[q`] }m∈N,0<`<pm,p-`.

Conversely, assume (5.5) and (5.8) hold. Then for each q ∈ P \ {p},

{Xqn}n∈N0
=


∞∑
m=1

∑
0<`<pm, p-`

A
(m)
`

(
e

(
nq`

pm

)
− 1

)
n∈N0

d
=


∞∑
m=1

∑
0<`<pm, p-`

A
(m)
[q`]

(
e

(
nq`

pm

)
− 1

)
n∈N0

=


∞∑
m=1

∑
0<[q`]<pm, p-`

A
(m)
[q`]

(
e

(
n[q`]

pm

)
− 1

)
n∈N0

= {Xn}n∈N0 .

Similarly,

{Xpn}n∈N0
=


∞∑
m=2

∑
0<`<pm, p-`

A
(m)
`

(
e

(
n`

pm−1

)
− 1

)
n∈N0

=


∞∑
m=2

∑
0<`<pm−1, p-`

(
e

(
n`

pm−1

)
− 1

) p−1∑
t=0

A
(m)
tpm−1+`


n∈N0

=


∞∑
m=1

∑
0<`<pm, p-`

(
e

(
n`

pm

)
− 1

) p−1∑
t=0

A
(m+1)
tpm+`


n∈N0

d
=


∞∑
m=1

∑
0<`<pm, p-`

(
e

(
n`

pm

)
− 1

)
p−HA

(m)
`


n∈N0

= {p−HXn}n∈N0
.

Thus, {Xn}n∈N0
is self-similar with scaling function b(n) = (|n|p)H .

Combining the results of Lemma 5.8, Propositions 5.14, 5.15 and 5.16 immediately
leads to Theorem 5.1.
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